氧化铝-氧化锆陶瓷中六铝酸钙形成的特征

Q4 Materials Science
Nina Cherkasova, Kristina Antropova, Ruslan Kuzmin, Kemal Emurlaev, Ivanna Kuchumova, Nomina Burkhinova, Yulia Zobova
{"title":"氧化铝-氧化锆陶瓷中六铝酸钙形成的特征","authors":"Nina Cherkasova, Kristina Antropova, Ruslan Kuzmin, Kemal Emurlaev, Ivanna Kuchumova, Nomina Burkhinova, Yulia Zobova","doi":"10.15826/chimtech.2023.10.3.17","DOIUrl":null,"url":null,"abstract":"Alumina-zirconia composites containing calcium hexaaluminate in the amount from 0 to 15 wt.% were investigated. The materials were obtained by water dispersion, granulation, axial pressing, and free sintering. Density and open porosity were determined by the hydrostatic weighing method. Phase analysis was performed using synchrotron radiation. Structural investigations were conducted using scanning and transmission electron microscopy. Vickers hardness was determined at a load of 10 kg. Fracture toughness was determined by the indentation method. With increasing CaAl12O19 content in the composites, the relative density decreased from 98.5% to 91.8%, and the open porosity increased from 0.2 to 1.4%. The lattice parameters of t-ZrO2 crystal lattice did not change up to 12 wt.% CaAl12O19, and the degree of tetragonality was 1.435. The degree of tetragonality decreased for the material with 15 wt.% CaAl12O19 and reached 1.420. The lattice parameters of CaAl12O19 decreased with increasing content. Platelet size increased with increasing calcium hexaaluminate content. For the materials containing up to 9 wt.% CaAl12O19, the average length of the platelets was 2 μm, the width was 0.4 μm, and the aspect ratio was 5. For the material with maximum calcium hexaaluminate content, the average length of the platelets was 4.2 μm, the width was 0.6 μm, and the aspect ratio was 7. With increasing CaAl12O19 content, the hardness decreased from 1700±25 to 1390±30 Hv, and the critical stress intensity factor increased by 34% to 6.7±0.3 MPa·m1/2.","PeriodicalId":9964,"journal":{"name":"Chimica Techno Acta","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Features of calcium hexaaluminate formation in alumina-zirconia ceramics\",\"authors\":\"Nina Cherkasova, Kristina Antropova, Ruslan Kuzmin, Kemal Emurlaev, Ivanna Kuchumova, Nomina Burkhinova, Yulia Zobova\",\"doi\":\"10.15826/chimtech.2023.10.3.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Alumina-zirconia composites containing calcium hexaaluminate in the amount from 0 to 15 wt.% were investigated. The materials were obtained by water dispersion, granulation, axial pressing, and free sintering. Density and open porosity were determined by the hydrostatic weighing method. Phase analysis was performed using synchrotron radiation. Structural investigations were conducted using scanning and transmission electron microscopy. Vickers hardness was determined at a load of 10 kg. Fracture toughness was determined by the indentation method. With increasing CaAl12O19 content in the composites, the relative density decreased from 98.5% to 91.8%, and the open porosity increased from 0.2 to 1.4%. The lattice parameters of t-ZrO2 crystal lattice did not change up to 12 wt.% CaAl12O19, and the degree of tetragonality was 1.435. The degree of tetragonality decreased for the material with 15 wt.% CaAl12O19 and reached 1.420. The lattice parameters of CaAl12O19 decreased with increasing content. Platelet size increased with increasing calcium hexaaluminate content. For the materials containing up to 9 wt.% CaAl12O19, the average length of the platelets was 2 μm, the width was 0.4 μm, and the aspect ratio was 5. For the material with maximum calcium hexaaluminate content, the average length of the platelets was 4.2 μm, the width was 0.6 μm, and the aspect ratio was 7. With increasing CaAl12O19 content, the hardness decreased from 1700±25 to 1390±30 Hv, and the critical stress intensity factor increased by 34% to 6.7±0.3 MPa·m1/2.\",\"PeriodicalId\":9964,\"journal\":{\"name\":\"Chimica Techno Acta\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chimica Techno Acta\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15826/chimtech.2023.10.3.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chimica Techno Acta","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15826/chimtech.2023.10.3.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

摘要

研究了六铝酸钙含量为0 ~ 15wt %的氧化铝-氧化锆复合材料。物料经水分散、造粒、轴压、自由烧结等工艺得到。采用流体静力称重法测定密度和开孔率。用同步辐射进行相位分析。利用扫描电镜和透射电镜对其结构进行了研究。在10kg载荷下测定维氏硬度。用压痕法测定断裂韧性。随着CaAl12O19含量的增加,复合材料的相对密度从98.5%降低到91.8%,孔隙率从0.2%提高到1.4%。当CaAl12O19含量达到12 wt.%时,t-ZrO2的晶格参数没有变化,正方度为1.435。当CaAl12O19质量分数为15 wt.%时,材料的四边形度下降,达到1.420。CaAl12O19的晶格参数随含量的增加而降低。血小板大小随六铝酸钙含量的增加而增加。当CaAl12O19含量高达9 wt.%时,血小板的平均长度为2 μm,宽度为0.4 μm,长径比为5。对于六铝酸钙含量最高的材料,血小板的平均长度为4.2 μm,宽度为0.6 μm,长径比为7。随着CaAl12O19含量的增加,合金硬度从1700±25 Hv下降到1390±30 Hv,临界应力强度因子增加34%,达到6.7±0.3 MPa·m1/2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Features of calcium hexaaluminate formation in alumina-zirconia ceramics
Alumina-zirconia composites containing calcium hexaaluminate in the amount from 0 to 15 wt.% were investigated. The materials were obtained by water dispersion, granulation, axial pressing, and free sintering. Density and open porosity were determined by the hydrostatic weighing method. Phase analysis was performed using synchrotron radiation. Structural investigations were conducted using scanning and transmission electron microscopy. Vickers hardness was determined at a load of 10 kg. Fracture toughness was determined by the indentation method. With increasing CaAl12O19 content in the composites, the relative density decreased from 98.5% to 91.8%, and the open porosity increased from 0.2 to 1.4%. The lattice parameters of t-ZrO2 crystal lattice did not change up to 12 wt.% CaAl12O19, and the degree of tetragonality was 1.435. The degree of tetragonality decreased for the material with 15 wt.% CaAl12O19 and reached 1.420. The lattice parameters of CaAl12O19 decreased with increasing content. Platelet size increased with increasing calcium hexaaluminate content. For the materials containing up to 9 wt.% CaAl12O19, the average length of the platelets was 2 μm, the width was 0.4 μm, and the aspect ratio was 5. For the material with maximum calcium hexaaluminate content, the average length of the platelets was 4.2 μm, the width was 0.6 μm, and the aspect ratio was 7. With increasing CaAl12O19 content, the hardness decreased from 1700±25 to 1390±30 Hv, and the critical stress intensity factor increased by 34% to 6.7±0.3 MPa·m1/2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chimica Techno Acta
Chimica Techno Acta Chemical Engineering-Chemical Engineering (all)
CiteScore
1.00
自引率
0.00%
发文量
67
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信