具有自由阿贝尔基本群的简单复形的顶点数

IF 0.6 3区 数学 Q3 MATHEMATICS
Florian Frick, Matt Superdock
{"title":"具有自由阿贝尔基本群的简单复形的顶点数","authors":"Florian Frick, Matt Superdock","doi":"10.26493/1855-3974.3089.b49","DOIUrl":null,"url":null,"abstract":"We show that the minimum number of vertices of a simplicial complex with fundamental group ℤn is at most O(n) and at least Ω(n3/4). For the upper bound, we use a result on orthogonal 1-factorizations of K2n. For the lower bound, we use a fractional Sylvester–Gallai result. This application of extremal results in discrete geometry seems to be new. We also prove that any group presentation ⟨S|R⟩ ≅ ℤn whose relations are of the form gahbic for g, h, i ∈ S has at least Ω(n3/2) generators.","PeriodicalId":49239,"journal":{"name":"Ars Mathematica Contemporanea","volume":"36 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Vertex numbers of simplicial complexes with free abelian fundamental group\",\"authors\":\"Florian Frick, Matt Superdock\",\"doi\":\"10.26493/1855-3974.3089.b49\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the minimum number of vertices of a simplicial complex with fundamental group ℤn is at most O(n) and at least Ω(n3/4). For the upper bound, we use a result on orthogonal 1-factorizations of K2n. For the lower bound, we use a fractional Sylvester–Gallai result. This application of extremal results in discrete geometry seems to be new. We also prove that any group presentation ⟨S|R⟩ ≅ ℤn whose relations are of the form gahbic for g, h, i ∈ S has at least Ω(n3/2) generators.\",\"PeriodicalId\":49239,\"journal\":{\"name\":\"Ars Mathematica Contemporanea\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ars Mathematica Contemporanea\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26493/1855-3974.3089.b49\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ars Mathematica Contemporanea","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26493/1855-3974.3089.b49","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

证明了具有基本群的简单复合体的最小顶点数最多为O(n),最少为Ω(n3/4)。对于上界,我们使用了K2n的正交1因子分解的结果。对于下界,我们使用分数Sylvester-Gallai结果。这种极值结果在离散几何中的应用似乎是新的。我们也证明了任何群表示⟨S|R⟩≠sn,其关系的形式为ghbic for g, h, i∈S至少有Ω(n3/2)个生成器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vertex numbers of simplicial complexes with free abelian fundamental group
We show that the minimum number of vertices of a simplicial complex with fundamental group ℤn is at most O(n) and at least Ω(n3/4). For the upper bound, we use a result on orthogonal 1-factorizations of K2n. For the lower bound, we use a fractional Sylvester–Gallai result. This application of extremal results in discrete geometry seems to be new. We also prove that any group presentation ⟨S|R⟩ ≅ ℤn whose relations are of the form gahbic for g, h, i ∈ S has at least Ω(n3/2) generators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ars Mathematica Contemporanea
Ars Mathematica Contemporanea MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.70
自引率
0.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: Ars mathematica contemporanea will publish high-quality articles in contemporary mathematics that arise from the discrete and concrete mathematics paradigm. It will favor themes that combine at least two different fields of mathematics. In particular, we welcome papers intersecting discrete mathematics with other branches of mathematics, such as algebra, geometry, topology, theoretical computer science, and combinatorics. The name of the journal was chosen carefully. Symmetry is certainly a theme that is quite welcome to the journal, as it is through symmetry that mathematics comes closest to art.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信