{"title":"具有自由阿贝尔基本群的简单复形的顶点数","authors":"Florian Frick, Matt Superdock","doi":"10.26493/1855-3974.3089.b49","DOIUrl":null,"url":null,"abstract":"We show that the minimum number of vertices of a simplicial complex with fundamental group ℤn is at most O(n) and at least Ω(n3/4). For the upper bound, we use a result on orthogonal 1-factorizations of K2n. For the lower bound, we use a fractional Sylvester–Gallai result. This application of extremal results in discrete geometry seems to be new. We also prove that any group presentation ⟨S|R⟩ ≅ ℤn whose relations are of the form gahbic for g, h, i ∈ S has at least Ω(n3/2) generators.","PeriodicalId":49239,"journal":{"name":"Ars Mathematica Contemporanea","volume":"36 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Vertex numbers of simplicial complexes with free abelian fundamental group\",\"authors\":\"Florian Frick, Matt Superdock\",\"doi\":\"10.26493/1855-3974.3089.b49\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the minimum number of vertices of a simplicial complex with fundamental group ℤn is at most O(n) and at least Ω(n3/4). For the upper bound, we use a result on orthogonal 1-factorizations of K2n. For the lower bound, we use a fractional Sylvester–Gallai result. This application of extremal results in discrete geometry seems to be new. We also prove that any group presentation ⟨S|R⟩ ≅ ℤn whose relations are of the form gahbic for g, h, i ∈ S has at least Ω(n3/2) generators.\",\"PeriodicalId\":49239,\"journal\":{\"name\":\"Ars Mathematica Contemporanea\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ars Mathematica Contemporanea\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26493/1855-3974.3089.b49\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ars Mathematica Contemporanea","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26493/1855-3974.3089.b49","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
摘要
证明了具有基本群的简单复合体的最小顶点数最多为O(n),最少为Ω(n3/4)。对于上界,我们使用了K2n的正交1因子分解的结果。对于下界,我们使用分数Sylvester-Gallai结果。这种极值结果在离散几何中的应用似乎是新的。我们也证明了任何群表示⟨S|R⟩≠sn,其关系的形式为ghbic for g, h, i∈S至少有Ω(n3/2)个生成器。
Vertex numbers of simplicial complexes with free abelian fundamental group
We show that the minimum number of vertices of a simplicial complex with fundamental group ℤn is at most O(n) and at least Ω(n3/4). For the upper bound, we use a result on orthogonal 1-factorizations of K2n. For the lower bound, we use a fractional Sylvester–Gallai result. This application of extremal results in discrete geometry seems to be new. We also prove that any group presentation ⟨S|R⟩ ≅ ℤn whose relations are of the form gahbic for g, h, i ∈ S has at least Ω(n3/2) generators.
期刊介绍:
Ars mathematica contemporanea will publish high-quality articles in contemporary mathematics that arise from the discrete and concrete mathematics paradigm. It will favor themes that combine at least two different fields of mathematics. In particular, we welcome papers intersecting discrete mathematics with other branches of mathematics, such as algebra, geometry, topology, theoretical computer science, and combinatorics. The name of the journal was chosen carefully. Symmetry is certainly a theme that is quite welcome to the journal, as it is through symmetry that mathematics comes closest to art.