实现生物现实硅神经元网络的可扩展数字建模

IF 3.7 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Swagat Bhattacharyya;Praveen Raj Ayyappan;Jennifer O. Hasler
{"title":"实现生物现实硅神经元网络的可扩展数字建模","authors":"Swagat Bhattacharyya;Praveen Raj Ayyappan;Jennifer O. Hasler","doi":"10.1109/JETCAS.2023.3330069","DOIUrl":null,"url":null,"abstract":"The study of biorealistic neuron circuits has been limited by the efficiency of digital implementations. Efficient digital approaches generally use I&F variants, losing important neural properties for network computation. In contrast, accurate neuron ODEs tend to utilize computationally intensive operations, causing the overhead to become prohibitive for large spiking neural network applications. This effort presents efficient digital approximations for coupled HH neurons derived from transistor-channel neural modeling. Neuron models are implemented in C using floating-point and 32-bit fixed-point arithmetic, and small networks are simulated using a fixed-step ODE solver. Our approach enables large network simulation of HH-like neurons, facilitating scalable digital modeling while also providing a direct path towards a framework for analog computation.","PeriodicalId":48827,"journal":{"name":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems","volume":"13 4","pages":"927-939"},"PeriodicalIF":3.7000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards Scalable Digital Modeling of Networks of Biorealistic Silicon Neurons\",\"authors\":\"Swagat Bhattacharyya;Praveen Raj Ayyappan;Jennifer O. Hasler\",\"doi\":\"10.1109/JETCAS.2023.3330069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study of biorealistic neuron circuits has been limited by the efficiency of digital implementations. Efficient digital approaches generally use I&F variants, losing important neural properties for network computation. In contrast, accurate neuron ODEs tend to utilize computationally intensive operations, causing the overhead to become prohibitive for large spiking neural network applications. This effort presents efficient digital approximations for coupled HH neurons derived from transistor-channel neural modeling. Neuron models are implemented in C using floating-point and 32-bit fixed-point arithmetic, and small networks are simulated using a fixed-step ODE solver. Our approach enables large network simulation of HH-like neurons, facilitating scalable digital modeling while also providing a direct path towards a framework for analog computation.\",\"PeriodicalId\":48827,\"journal\":{\"name\":\"IEEE Journal on Emerging and Selected Topics in Circuits and Systems\",\"volume\":\"13 4\",\"pages\":\"927-939\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal on Emerging and Selected Topics in Circuits and Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10305556/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10305556/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

对生物现实神经元电路的研究一直受到数字实现效率的限制。高效的数字方法通常使用 I&F 变体,从而丧失了网络计算的重要神经特性。与此相反,精确的神经元 ODE 往往使用计算密集型操作,导致大型尖峰神经网络应用的开销过大。这项研究提出了从晶体管通道神经建模中得出的耦合 HH 神经元的高效数字近似值。神经元模型使用 C 语言浮点运算和 32 位定点运算实现,并使用固定步长的 ODE 求解器模拟小型网络。我们的方法实现了类似 HH 神经元的大型网络模拟,促进了可扩展的数字建模,同时也为模拟计算框架提供了一条直接途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Scalable Digital Modeling of Networks of Biorealistic Silicon Neurons
The study of biorealistic neuron circuits has been limited by the efficiency of digital implementations. Efficient digital approaches generally use I&F variants, losing important neural properties for network computation. In contrast, accurate neuron ODEs tend to utilize computationally intensive operations, causing the overhead to become prohibitive for large spiking neural network applications. This effort presents efficient digital approximations for coupled HH neurons derived from transistor-channel neural modeling. Neuron models are implemented in C using floating-point and 32-bit fixed-point arithmetic, and small networks are simulated using a fixed-step ODE solver. Our approach enables large network simulation of HH-like neurons, facilitating scalable digital modeling while also providing a direct path towards a framework for analog computation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.50
自引率
2.20%
发文量
86
期刊介绍: The IEEE Journal on Emerging and Selected Topics in Circuits and Systems is published quarterly and solicits, with particular emphasis on emerging areas, special issues on topics that cover the entire scope of the IEEE Circuits and Systems (CAS) Society, namely the theory, analysis, design, tools, and implementation of circuits and systems, spanning their theoretical foundations, applications, and architectures for signal and information processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信