{"title":"从序列到变量:重新思考序列与结果的关系","authors":"Satu Helske, Jouni Helske, Guilherme K. Chihaya","doi":"10.1177/00811750231177026","DOIUrl":null,"url":null,"abstract":"Sequence analysis is increasingly used in the social sciences for the holistic analysis of life-course and other longitudinal data. The usual approach is to construct sequences, calculate dissimilarities, group similar sequences with cluster analysis, and use cluster membership as a dependent or independent variable in a regression model. This approach may be problematic, as cluster memberships are assumed to be fixed known characteristics of the subjects in subsequent analyses. Furthermore, it is often more reasonable to assume that individual sequences are mixtures of multiple ideal types rather than equal members of some group. Failing to account for uncertain and mixed memberships may lead to wrong conclusions about the nature of the studied relationships. In this article, the authors bring forward and discuss the problems of the “traditional” use of sequence analysis clusters as variables and compare four approaches for creating explanatory variables from sequence dissimilarities using different types of data. The authors conduct simulation and empirical studies, demonstrating the importance of considering how sequences and outcomes are related and the need to adjust analyses accordingly. In many typical social science applications, the traditional approach is prone to result in wrong conclusions, and similarity-based approaches such as representativeness should be preferred.","PeriodicalId":48140,"journal":{"name":"Sociological Methodology","volume":"34 1","pages":"0"},"PeriodicalIF":2.4000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From Sequences to Variables: Rethinking the Relationship between Sequences and Outcomes\",\"authors\":\"Satu Helske, Jouni Helske, Guilherme K. Chihaya\",\"doi\":\"10.1177/00811750231177026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sequence analysis is increasingly used in the social sciences for the holistic analysis of life-course and other longitudinal data. The usual approach is to construct sequences, calculate dissimilarities, group similar sequences with cluster analysis, and use cluster membership as a dependent or independent variable in a regression model. This approach may be problematic, as cluster memberships are assumed to be fixed known characteristics of the subjects in subsequent analyses. Furthermore, it is often more reasonable to assume that individual sequences are mixtures of multiple ideal types rather than equal members of some group. Failing to account for uncertain and mixed memberships may lead to wrong conclusions about the nature of the studied relationships. In this article, the authors bring forward and discuss the problems of the “traditional” use of sequence analysis clusters as variables and compare four approaches for creating explanatory variables from sequence dissimilarities using different types of data. The authors conduct simulation and empirical studies, demonstrating the importance of considering how sequences and outcomes are related and the need to adjust analyses accordingly. In many typical social science applications, the traditional approach is prone to result in wrong conclusions, and similarity-based approaches such as representativeness should be preferred.\",\"PeriodicalId\":48140,\"journal\":{\"name\":\"Sociological Methodology\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sociological Methodology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/00811750231177026\",\"RegionNum\":2,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOCIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sociological Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/00811750231177026","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIOLOGY","Score":null,"Total":0}
From Sequences to Variables: Rethinking the Relationship between Sequences and Outcomes
Sequence analysis is increasingly used in the social sciences for the holistic analysis of life-course and other longitudinal data. The usual approach is to construct sequences, calculate dissimilarities, group similar sequences with cluster analysis, and use cluster membership as a dependent or independent variable in a regression model. This approach may be problematic, as cluster memberships are assumed to be fixed known characteristics of the subjects in subsequent analyses. Furthermore, it is often more reasonable to assume that individual sequences are mixtures of multiple ideal types rather than equal members of some group. Failing to account for uncertain and mixed memberships may lead to wrong conclusions about the nature of the studied relationships. In this article, the authors bring forward and discuss the problems of the “traditional” use of sequence analysis clusters as variables and compare four approaches for creating explanatory variables from sequence dissimilarities using different types of data. The authors conduct simulation and empirical studies, demonstrating the importance of considering how sequences and outcomes are related and the need to adjust analyses accordingly. In many typical social science applications, the traditional approach is prone to result in wrong conclusions, and similarity-based approaches such as representativeness should be preferred.
期刊介绍:
Sociological Methodology is a compendium of new and sometimes controversial advances in social science methodology. Contributions come from diverse areas and have something useful -- and often surprising -- to say about a wide range of topics ranging from legal and ethical issues surrounding data collection to the methodology of theory construction. In short, Sociological Methodology holds something of value -- and an interesting mix of lively controversy, too -- for nearly everyone who participates in the enterprise of sociological research.