Barbara Nußbaummüller, Bernhard Etzlinger, Karin Anna Hummel
{"title":"基于ble的接触跟踪:距离估计误差的表征和缓解方案","authors":"Barbara Nußbaummüller, Bernhard Etzlinger, Karin Anna Hummel","doi":"10.1109/mprv.2023.3323747","DOIUrl":null,"url":null,"abstract":"Contact tracing is an accepted means to keep track of human infection chains during epidemics. Contact tracing smartphone apps such as deployed during the recent COVID-19 pandemic are widely based on distance estimation by privacy-preserving use of Bluetooth Low Energy (BLE). Yet, the BLE received signal strength indicator used for distance estimation is too weakly correlated with the distance in real scenarios. Major impacting factors are varying body shielding and signal propagation characteristics of the environment. We present a method that adjusts the common BLE pathloss model with a context factor, which can be experimentally derived based on phone carry position and environment detection. Experiments with a smartphone testbed show that the distance estimation error can be reduced to about 1 m for four major carry positions in short-distance indoor and outdoor settings. This result is an encouraging first step towards reliable privacy-preserving contact tracing.","PeriodicalId":55021,"journal":{"name":"IEEE Pervasive Computing","volume":"6 1","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BLE-Based Contact Tracing: Characterization of Distance Estimation Errors and Mitigation Options\",\"authors\":\"Barbara Nußbaummüller, Bernhard Etzlinger, Karin Anna Hummel\",\"doi\":\"10.1109/mprv.2023.3323747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Contact tracing is an accepted means to keep track of human infection chains during epidemics. Contact tracing smartphone apps such as deployed during the recent COVID-19 pandemic are widely based on distance estimation by privacy-preserving use of Bluetooth Low Energy (BLE). Yet, the BLE received signal strength indicator used for distance estimation is too weakly correlated with the distance in real scenarios. Major impacting factors are varying body shielding and signal propagation characteristics of the environment. We present a method that adjusts the common BLE pathloss model with a context factor, which can be experimentally derived based on phone carry position and environment detection. Experiments with a smartphone testbed show that the distance estimation error can be reduced to about 1 m for four major carry positions in short-distance indoor and outdoor settings. This result is an encouraging first step towards reliable privacy-preserving contact tracing.\",\"PeriodicalId\":55021,\"journal\":{\"name\":\"IEEE Pervasive Computing\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Pervasive Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/mprv.2023.3323747\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Pervasive Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mprv.2023.3323747","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
BLE-Based Contact Tracing: Characterization of Distance Estimation Errors and Mitigation Options
Contact tracing is an accepted means to keep track of human infection chains during epidemics. Contact tracing smartphone apps such as deployed during the recent COVID-19 pandemic are widely based on distance estimation by privacy-preserving use of Bluetooth Low Energy (BLE). Yet, the BLE received signal strength indicator used for distance estimation is too weakly correlated with the distance in real scenarios. Major impacting factors are varying body shielding and signal propagation characteristics of the environment. We present a method that adjusts the common BLE pathloss model with a context factor, which can be experimentally derived based on phone carry position and environment detection. Experiments with a smartphone testbed show that the distance estimation error can be reduced to about 1 m for four major carry positions in short-distance indoor and outdoor settings. This result is an encouraging first step towards reliable privacy-preserving contact tracing.
期刊介绍:
IEEE Pervasive Computing explores the role of computing in the physical world–as characterized by visions such as the Internet of Things and Ubiquitous Computing. Designed for researchers, practitioners, and educators, this publication acts as a catalyst for realizing the ideas described by Mark Weiser in 1988. The essence of this vision is the creation of environments saturated with sensing, computing, and wireless communication that gracefully support the needs of individuals and society. Many key building blocks for this vision are now viable commercial technologies: wearable and handheld computers, wireless networking, location sensing, Internet of Things platforms, and so on. However, the vision continues to present deep challenges for experts in areas such as hardware design, sensor networks, mobile systems, human-computer interaction, industrial design, machine learning, data science, and societal issues including privacy and ethics. Through special issues, the magazine explores applications in areas such as assisted living, automotive systems, cognitive assistance, hardware innovations, ICT4D, manufacturing, retail, smart cities, and sustainability. In addition, the magazine accepts peer-reviewed papers of wide interest under a general call, and also features regular columns on hot topics and interviews with luminaries in the field.