Mamika Ujianita Romdhini, Ashraf Al Al-Quran, Faisal Al Al-Sharqi, Hazwani Hashim, Abdalwali Lutfi
{"title":"揭示q -复合物中性软环的创新方法","authors":"Mamika Ujianita Romdhini, Ashraf Al Al-Quran, Faisal Al Al-Sharqi, Hazwani Hashim, Abdalwali Lutfi","doi":"10.54216/ijns.220402","DOIUrl":null,"url":null,"abstract":"In this paper, our aim is to investigate the algebraic structures within the Q-complex neutrosophic soft model. We introduce two fundamental concepts: the Q-complex neutrosophic soft ring (Q-CNSR) and the Q-complex neutrosophic soft ideal (Q-CNSI). Q-CNSRs combine the properties of Q-complex neutrosophic soft sets (Q-CNSSs) with ring theory, effectively capturing uncertainty and indeterminacy present in ring operations through the incorporation of Q-complex neutrosophic membership values. Additionally, we define Q-CNSIs as subsets of Q-CNSRs that possess distinctive properties and hold significant roles in ring theory. Furthermore, we discuss and verify the specific algebraic properties of Q-CNSR and Q-CNSI. By examining these properties, we gain a deeper understanding of the algebraic behavior of Q-CNSR and Q-CNSI. In particular, we shed light on the relationship between Q-CNSRs and soft rings. This provides insights into how Q-CNSR relates to the broader framework of soft ring, highlighting the unique features and contributions of Q-complex neutrosophic soft structures in the realm of algebraic analysis. We have also verified the relations between Q-CNSR and Q-neutrosophic soft ring (Q-NSR), as well as between Q-CNSI and Q-neutrosophic soft ideal (Q-NSI). Through this comprehensive exploration, our objective is to advance the understanding of Q-CNSR and Q-CNSI, thereby contributing to the field of algebraic analysis and its application in handling uncertainty and vagueness.","PeriodicalId":192295,"journal":{"name":"International Journal of Neutrosophic Science","volume":"265 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling an Innovative Approach to Q-Complex Neutrosophic Soft Rings\",\"authors\":\"Mamika Ujianita Romdhini, Ashraf Al Al-Quran, Faisal Al Al-Sharqi, Hazwani Hashim, Abdalwali Lutfi\",\"doi\":\"10.54216/ijns.220402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, our aim is to investigate the algebraic structures within the Q-complex neutrosophic soft model. We introduce two fundamental concepts: the Q-complex neutrosophic soft ring (Q-CNSR) and the Q-complex neutrosophic soft ideal (Q-CNSI). Q-CNSRs combine the properties of Q-complex neutrosophic soft sets (Q-CNSSs) with ring theory, effectively capturing uncertainty and indeterminacy present in ring operations through the incorporation of Q-complex neutrosophic membership values. Additionally, we define Q-CNSIs as subsets of Q-CNSRs that possess distinctive properties and hold significant roles in ring theory. Furthermore, we discuss and verify the specific algebraic properties of Q-CNSR and Q-CNSI. By examining these properties, we gain a deeper understanding of the algebraic behavior of Q-CNSR and Q-CNSI. In particular, we shed light on the relationship between Q-CNSRs and soft rings. This provides insights into how Q-CNSR relates to the broader framework of soft ring, highlighting the unique features and contributions of Q-complex neutrosophic soft structures in the realm of algebraic analysis. We have also verified the relations between Q-CNSR and Q-neutrosophic soft ring (Q-NSR), as well as between Q-CNSI and Q-neutrosophic soft ideal (Q-NSI). Through this comprehensive exploration, our objective is to advance the understanding of Q-CNSR and Q-CNSI, thereby contributing to the field of algebraic analysis and its application in handling uncertainty and vagueness.\",\"PeriodicalId\":192295,\"journal\":{\"name\":\"International Journal of Neutrosophic Science\",\"volume\":\"265 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Neutrosophic Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54216/ijns.220402\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Neutrosophic Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54216/ijns.220402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Unveiling an Innovative Approach to Q-Complex Neutrosophic Soft Rings
In this paper, our aim is to investigate the algebraic structures within the Q-complex neutrosophic soft model. We introduce two fundamental concepts: the Q-complex neutrosophic soft ring (Q-CNSR) and the Q-complex neutrosophic soft ideal (Q-CNSI). Q-CNSRs combine the properties of Q-complex neutrosophic soft sets (Q-CNSSs) with ring theory, effectively capturing uncertainty and indeterminacy present in ring operations through the incorporation of Q-complex neutrosophic membership values. Additionally, we define Q-CNSIs as subsets of Q-CNSRs that possess distinctive properties and hold significant roles in ring theory. Furthermore, we discuss and verify the specific algebraic properties of Q-CNSR and Q-CNSI. By examining these properties, we gain a deeper understanding of the algebraic behavior of Q-CNSR and Q-CNSI. In particular, we shed light on the relationship between Q-CNSRs and soft rings. This provides insights into how Q-CNSR relates to the broader framework of soft ring, highlighting the unique features and contributions of Q-complex neutrosophic soft structures in the realm of algebraic analysis. We have also verified the relations between Q-CNSR and Q-neutrosophic soft ring (Q-NSR), as well as between Q-CNSI and Q-neutrosophic soft ideal (Q-NSI). Through this comprehensive exploration, our objective is to advance the understanding of Q-CNSR and Q-CNSI, thereby contributing to the field of algebraic analysis and its application in handling uncertainty and vagueness.