夏季高空急流调节南美气候对ENSO的响应

IF 3.8 2区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Soledad Collazo, Ricardo García-Herrera, David Barriopedro
{"title":"夏季高空急流调节南美气候对ENSO的响应","authors":"Soledad Collazo, Ricardo García-Herrera, David Barriopedro","doi":"10.1007/s00382-023-06955-9","DOIUrl":null,"url":null,"abstract":"Abstract The upper-level jet stream is a critical element of atmospheric circulation, driving synoptic systems and extreme weather events. This study analyzes the impact of upper-level jets on South American (SA) summer temperature and precipitation under different El Niño-Southern Oscillation (ENSO) phases. Using the ERA5 reanalysis dataset from 1979 to 2022, we perform a daily multiparametric characterization of the jet stream, considering its spatial and temporal discontinuities. Besides latitude and intensity, we find that the departure and number of branches of the subtropical jet (STJ) and the longitudinal extent of the Pacific branch of the polar front jet (PFJ) are needed for their description. An additional parameter is required to characterize the STJ due to its absence on around 40% of summer days over SA. Moreover, we observe distinct long-term changes in PFJ parameters across different ocean basins. Three synoptic weather types (WTs) of the upper-level zonal wind are identified: normal conditions, a prominent STJ pattern, and a PFJ-only pattern. The latter pattern is associated with anticyclonic anomalies at 500 hPa in the South Atlantic Ocean and an active SA Convergence Zone, which favors clear skies and warm (wet and cold) conditions in southern SA (Brazil). Consistently, the probability of experiencing warm spells in central Argentina is increased more than twofold. Finally, we detect that the temperature anomalies associated with the WTs are independent of the ENSO phase. However, ENSO modulates the frequency of the WTs: during La Niña (El Niño), the PFJ-only (prominent STJ) pattern is more common.","PeriodicalId":10165,"journal":{"name":"Climate Dynamics","volume":"7 1","pages":"0"},"PeriodicalIF":3.8000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Summer upper-level jets modulate the response of South American climate to ENSO\",\"authors\":\"Soledad Collazo, Ricardo García-Herrera, David Barriopedro\",\"doi\":\"10.1007/s00382-023-06955-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The upper-level jet stream is a critical element of atmospheric circulation, driving synoptic systems and extreme weather events. This study analyzes the impact of upper-level jets on South American (SA) summer temperature and precipitation under different El Niño-Southern Oscillation (ENSO) phases. Using the ERA5 reanalysis dataset from 1979 to 2022, we perform a daily multiparametric characterization of the jet stream, considering its spatial and temporal discontinuities. Besides latitude and intensity, we find that the departure and number of branches of the subtropical jet (STJ) and the longitudinal extent of the Pacific branch of the polar front jet (PFJ) are needed for their description. An additional parameter is required to characterize the STJ due to its absence on around 40% of summer days over SA. Moreover, we observe distinct long-term changes in PFJ parameters across different ocean basins. Three synoptic weather types (WTs) of the upper-level zonal wind are identified: normal conditions, a prominent STJ pattern, and a PFJ-only pattern. The latter pattern is associated with anticyclonic anomalies at 500 hPa in the South Atlantic Ocean and an active SA Convergence Zone, which favors clear skies and warm (wet and cold) conditions in southern SA (Brazil). Consistently, the probability of experiencing warm spells in central Argentina is increased more than twofold. Finally, we detect that the temperature anomalies associated with the WTs are independent of the ENSO phase. However, ENSO modulates the frequency of the WTs: during La Niña (El Niño), the PFJ-only (prominent STJ) pattern is more common.\",\"PeriodicalId\":10165,\"journal\":{\"name\":\"Climate Dynamics\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Climate Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00382-023-06955-9\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00382-023-06955-9","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

高空急流是影响大气环流、驱动天气系统和极端天气事件的重要因素。本文分析了不同El Niño-Southern涛动(ENSO)相下高空急流对南美洲夏季气温和降水的影响。利用1979 - 2022年的ERA5再分析数据,考虑到其时空不连续性,我们对急流进行了每日多参数表征。除了纬度和强度外,副热带急流(STJ)的偏离和分支数以及极锋急流(PFJ)太平洋分支的纵向范围也需要对其进行描述。由于STJ在SA夏季约40%的时间里不存在,因此需要一个额外的参数来表征STJ。此外,我们还观察到不同洋盆PFJ参数的长期变化。确定了高空纬向风的三种天气类型:正常条件、突出的STJ型和仅pfj型。后一种模式与南大西洋500 hPa的反气旋异常和活跃的南太平洋辐合带有关,该辐合带有利于南太平洋南部(巴西)的晴朗天空和温暖(潮湿和寒冷)条件。一直以来,阿根廷中部经历温暖期的可能性增加了两倍多。最后,我们发现与WTs相关的温度异常与ENSO相无关。然而,ENSO调节WTs的频率:在La Niña (El Niño)期间,仅pfj(突出的STJ)模式更为常见。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Summer upper-level jets modulate the response of South American climate to ENSO
Abstract The upper-level jet stream is a critical element of atmospheric circulation, driving synoptic systems and extreme weather events. This study analyzes the impact of upper-level jets on South American (SA) summer temperature and precipitation under different El Niño-Southern Oscillation (ENSO) phases. Using the ERA5 reanalysis dataset from 1979 to 2022, we perform a daily multiparametric characterization of the jet stream, considering its spatial and temporal discontinuities. Besides latitude and intensity, we find that the departure and number of branches of the subtropical jet (STJ) and the longitudinal extent of the Pacific branch of the polar front jet (PFJ) are needed for their description. An additional parameter is required to characterize the STJ due to its absence on around 40% of summer days over SA. Moreover, we observe distinct long-term changes in PFJ parameters across different ocean basins. Three synoptic weather types (WTs) of the upper-level zonal wind are identified: normal conditions, a prominent STJ pattern, and a PFJ-only pattern. The latter pattern is associated with anticyclonic anomalies at 500 hPa in the South Atlantic Ocean and an active SA Convergence Zone, which favors clear skies and warm (wet and cold) conditions in southern SA (Brazil). Consistently, the probability of experiencing warm spells in central Argentina is increased more than twofold. Finally, we detect that the temperature anomalies associated with the WTs are independent of the ENSO phase. However, ENSO modulates the frequency of the WTs: during La Niña (El Niño), the PFJ-only (prominent STJ) pattern is more common.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Climate Dynamics
Climate Dynamics 地学-气象与大气科学
CiteScore
8.80
自引率
15.20%
发文量
483
审稿时长
2-4 weeks
期刊介绍: The international journal Climate Dynamics provides for the publication of high-quality research on all aspects of the dynamics of the global climate system. Coverage includes original paleoclimatic, diagnostic, analytical and numerical modeling research on the structure and behavior of the atmosphere, oceans, cryosphere, biomass and land surface as interacting components of the dynamics of global climate. Contributions are focused on selected aspects of climate dynamics on particular scales of space or time. The journal also publishes reviews and papers emphasizing an integrated view of the physical and biogeochemical processes governing climate and climate change.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信