Erika K. Williams, Cristina Shea, Paloma Gonzalez-Perez
{"title":"迟发性gfpt1相关先天性肌无力综合征的胸大肌发育","authors":"Erika K. Williams, Cristina Shea, Paloma Gonzalez-Perez","doi":"10.1212/nxg.0000000000200102","DOIUrl":null,"url":null,"abstract":"Objectives The objective of this study was to expand the phenotypic spectrum of glutamine-fructose-6-phosphate transaminase 1 ( GFPT1 )–related congenital myasthenia syndrome (CMS). Methods A 61-year-old man with agenesis of the left pectoralis major muscle presented with progressive muscle weakness for a decade that transiently improved after exertion. Results His examination revealed proximal and distal muscle weakness in upper extremities and proximal muscle weakness in lower extremities. Muscle enzymes were elevated. An electromyogram revealed a myopathic pattern; however, a muscle biopsy of deltoid muscle and genetic testing for limb-girdle muscular dystrophies were nondiagnostic. A 3-Hz repetitive nerve stimulation of the spinal accessory nerve recording from trapezius muscle demonstrated a >20% drop in amplitude of the 5th compound motor action potential relative to 1st at both baseline and after 45-second exercise. Acetylcholine receptor binding, lipoprotein-related protein 4, muscle-specific kinase, and voltage-gated calcium channel P/Q antibodies were negative. Genetic testing targeting CMS revealed 2 likely pathogenic variants within GFPT1 : novel c.7+2T>G (intron 1) that was predicted to result in a null allele and known c*22 C>A (exon 19) associated with reduced GFPT1 expression. His muscle strength dramatically improved after pyridostigmine initiation. Discussion In addition to other reported neurodevelopmental abnormalities, pectoralis major muscle agenesis (or Poland syndrome) may be a clinical manifestation of GFPT1 -related CMS.","PeriodicalId":48613,"journal":{"name":"Neurology-Genetics","volume":"57 1","pages":"0"},"PeriodicalIF":3.0000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Agenesis of Pectoralis Major Muscle in Late-Onset<i>GFPT1</i>-Related Congenital Myasthenic Syndrome\",\"authors\":\"Erika K. Williams, Cristina Shea, Paloma Gonzalez-Perez\",\"doi\":\"10.1212/nxg.0000000000200102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objectives The objective of this study was to expand the phenotypic spectrum of glutamine-fructose-6-phosphate transaminase 1 ( GFPT1 )–related congenital myasthenia syndrome (CMS). Methods A 61-year-old man with agenesis of the left pectoralis major muscle presented with progressive muscle weakness for a decade that transiently improved after exertion. Results His examination revealed proximal and distal muscle weakness in upper extremities and proximal muscle weakness in lower extremities. Muscle enzymes were elevated. An electromyogram revealed a myopathic pattern; however, a muscle biopsy of deltoid muscle and genetic testing for limb-girdle muscular dystrophies were nondiagnostic. A 3-Hz repetitive nerve stimulation of the spinal accessory nerve recording from trapezius muscle demonstrated a >20% drop in amplitude of the 5th compound motor action potential relative to 1st at both baseline and after 45-second exercise. Acetylcholine receptor binding, lipoprotein-related protein 4, muscle-specific kinase, and voltage-gated calcium channel P/Q antibodies were negative. Genetic testing targeting CMS revealed 2 likely pathogenic variants within GFPT1 : novel c.7+2T>G (intron 1) that was predicted to result in a null allele and known c*22 C>A (exon 19) associated with reduced GFPT1 expression. His muscle strength dramatically improved after pyridostigmine initiation. Discussion In addition to other reported neurodevelopmental abnormalities, pectoralis major muscle agenesis (or Poland syndrome) may be a clinical manifestation of GFPT1 -related CMS.\",\"PeriodicalId\":48613,\"journal\":{\"name\":\"Neurology-Genetics\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurology-Genetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1212/nxg.0000000000200102\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurology-Genetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1212/nxg.0000000000200102","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Agenesis of Pectoralis Major Muscle in Late-OnsetGFPT1-Related Congenital Myasthenic Syndrome
Objectives The objective of this study was to expand the phenotypic spectrum of glutamine-fructose-6-phosphate transaminase 1 ( GFPT1 )–related congenital myasthenia syndrome (CMS). Methods A 61-year-old man with agenesis of the left pectoralis major muscle presented with progressive muscle weakness for a decade that transiently improved after exertion. Results His examination revealed proximal and distal muscle weakness in upper extremities and proximal muscle weakness in lower extremities. Muscle enzymes were elevated. An electromyogram revealed a myopathic pattern; however, a muscle biopsy of deltoid muscle and genetic testing for limb-girdle muscular dystrophies were nondiagnostic. A 3-Hz repetitive nerve stimulation of the spinal accessory nerve recording from trapezius muscle demonstrated a >20% drop in amplitude of the 5th compound motor action potential relative to 1st at both baseline and after 45-second exercise. Acetylcholine receptor binding, lipoprotein-related protein 4, muscle-specific kinase, and voltage-gated calcium channel P/Q antibodies were negative. Genetic testing targeting CMS revealed 2 likely pathogenic variants within GFPT1 : novel c.7+2T>G (intron 1) that was predicted to result in a null allele and known c*22 C>A (exon 19) associated with reduced GFPT1 expression. His muscle strength dramatically improved after pyridostigmine initiation. Discussion In addition to other reported neurodevelopmental abnormalities, pectoralis major muscle agenesis (or Poland syndrome) may be a clinical manifestation of GFPT1 -related CMS.
期刊介绍:
Neurology: Genetics is an online open access journal publishing peer-reviewed reports in the field of neurogenetics. Original articles in all areas of neurogenetics will be published including rare and common genetic variation, genotype-phenotype correlations, outlier phenotypes as a result of mutations in known disease-genes, and genetic variations with a putative link to diseases. This will include studies reporting on genetic disease risk and pharmacogenomics. In addition, Neurology: Genetics will publish results of gene-based clinical trials (viral, ASO, etc.). Genetically engineered model systems are not a primary focus of Neurology: Genetics, but studies using model systems for treatment trials are welcome, including well-powered studies reporting negative results.