{"title":"创新管理中的人工智能:创新能力综述和人工智能应用分类","authors":"Fábio Gama, Stefano Magistretti","doi":"10.1111/jpim.12698","DOIUrl":null,"url":null,"abstract":"Abstract Artificial intelligence (AI) is a promising generation of digital technologies. Recent applications and research suggest that AI can not only influence but also accelerate innovation in organizations. However, as the field is rapidly growing, a common understanding of the underlying theoretical capabilities has become increasingly vague and fraught with ambiguity. In view of the centrality of innovation capabilities in making innovation happen, we bring together these scattered perspectives in a systematic and multidisciplinary literature review. The aim of this literature review is to summarize the role of AI in influencing innovation capabilities and provide a taxonomy of AI applications based on empirical studies. Drawing on the technological–organizational–environmental (TOE) framework, our review condenses the research findings of 62 studies. The results of our study are twofold. First, we identify a dichotomous view of innovation capabilities triggered by AI adoption: enabling and enhancing . The enabling capabilities are those that research identifies as enablers of AI adoption, underscoring the competencies and routines needed to implement AI. The enhancing capabilities denote the role that AI adoption has in transforming or creating innovation capabilities in organizations. Second, we propose a taxonomy of AI applications that reflects the practical adoption of AI in relation to three underlying reasons: replace , reinforce , and reveal . Our study makes three main contributions. First, we identify the innovation capabilities that are either required for or generated by AI adoption. Second, we propose a taxonomy of AI applications. Third, we use the TOE framework to track trends in the theoretical contributions of recent articles and propose a research agenda.","PeriodicalId":16900,"journal":{"name":"Journal of Product Innovation Management","volume":"2011 1","pages":"0"},"PeriodicalIF":10.1000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Artificial intelligence in innovation management: A review of innovation capabilities and a taxonomy of <scp>AI</scp> applications\",\"authors\":\"Fábio Gama, Stefano Magistretti\",\"doi\":\"10.1111/jpim.12698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Artificial intelligence (AI) is a promising generation of digital technologies. Recent applications and research suggest that AI can not only influence but also accelerate innovation in organizations. However, as the field is rapidly growing, a common understanding of the underlying theoretical capabilities has become increasingly vague and fraught with ambiguity. In view of the centrality of innovation capabilities in making innovation happen, we bring together these scattered perspectives in a systematic and multidisciplinary literature review. The aim of this literature review is to summarize the role of AI in influencing innovation capabilities and provide a taxonomy of AI applications based on empirical studies. Drawing on the technological–organizational–environmental (TOE) framework, our review condenses the research findings of 62 studies. The results of our study are twofold. First, we identify a dichotomous view of innovation capabilities triggered by AI adoption: enabling and enhancing . The enabling capabilities are those that research identifies as enablers of AI adoption, underscoring the competencies and routines needed to implement AI. The enhancing capabilities denote the role that AI adoption has in transforming or creating innovation capabilities in organizations. Second, we propose a taxonomy of AI applications that reflects the practical adoption of AI in relation to three underlying reasons: replace , reinforce , and reveal . Our study makes three main contributions. First, we identify the innovation capabilities that are either required for or generated by AI adoption. Second, we propose a taxonomy of AI applications. Third, we use the TOE framework to track trends in the theoretical contributions of recent articles and propose a research agenda.\",\"PeriodicalId\":16900,\"journal\":{\"name\":\"Journal of Product Innovation Management\",\"volume\":\"2011 1\",\"pages\":\"0\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Product Innovation Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/jpim.12698\",\"RegionNum\":1,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Product Innovation Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/jpim.12698","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS","Score":null,"Total":0}
Artificial intelligence in innovation management: A review of innovation capabilities and a taxonomy of AI applications
Abstract Artificial intelligence (AI) is a promising generation of digital technologies. Recent applications and research suggest that AI can not only influence but also accelerate innovation in organizations. However, as the field is rapidly growing, a common understanding of the underlying theoretical capabilities has become increasingly vague and fraught with ambiguity. In view of the centrality of innovation capabilities in making innovation happen, we bring together these scattered perspectives in a systematic and multidisciplinary literature review. The aim of this literature review is to summarize the role of AI in influencing innovation capabilities and provide a taxonomy of AI applications based on empirical studies. Drawing on the technological–organizational–environmental (TOE) framework, our review condenses the research findings of 62 studies. The results of our study are twofold. First, we identify a dichotomous view of innovation capabilities triggered by AI adoption: enabling and enhancing . The enabling capabilities are those that research identifies as enablers of AI adoption, underscoring the competencies and routines needed to implement AI. The enhancing capabilities denote the role that AI adoption has in transforming or creating innovation capabilities in organizations. Second, we propose a taxonomy of AI applications that reflects the practical adoption of AI in relation to three underlying reasons: replace , reinforce , and reveal . Our study makes three main contributions. First, we identify the innovation capabilities that are either required for or generated by AI adoption. Second, we propose a taxonomy of AI applications. Third, we use the TOE framework to track trends in the theoretical contributions of recent articles and propose a research agenda.
期刊介绍:
The Journal of Product Innovation Management is a leading academic journal focused on research, theory, and practice in innovation and new product development. It covers a broad scope of issues crucial to successful innovation in both external and internal organizational environments. The journal aims to inform, provoke thought, and contribute to the knowledge and practice of new product development and innovation management. It welcomes original articles from organizations of all sizes and domains, including start-ups, small to medium-sized enterprises, and large corporations, as well as from consumer, business-to-business, and policy domains. The journal accepts various quantitative and qualitative methodologies, and authors from diverse disciplines and functional perspectives are encouraged to submit their work.