Mahmood M. S. Abdullah, Hamad A. Al-Lohedan, Mohd Sajid Ali
{"title":"废塑料基多离子液体对原油乳状液脱水性能的研究","authors":"Mahmood M. S. Abdullah, Hamad A. Al-Lohedan, Mohd Sajid Ali","doi":"10.1155/2023/3740956","DOIUrl":null,"url":null,"abstract":"Polyethylene terephthalate (PET) is one of the most widely used plastics in the world. Due to the large production and use of this plastic, its waste represents one of the most critical environmental problems. The purpose of this study is to convert PET waste into a valuable material. The consumed PET was transformed into a precursor to synthesize a polyionic liquid (PIL) that was used for dehydrating crude oil emulsions. To do so, the consumed PET was converted to bis(2-hydroxyethyl) terephthalate (BHET). First, BHET and tetraethylene glycol were reacted separately with thionyl chloride, obtaining the corresponding alkyl halides, bis(2-chloroethyl) terephthalate, BCET, and TEC, respectively. Next, the obtained alkyl halides, BCET and TEC, were reacted with 1,5-pentanediamine, yielding a polymer (BTP). Finally, BTP was reacted with acetic acid to produce the corresponding PIL (BTP–PIL). The structure and thermal stability of BTP–PIL were characterized using nuclear magnetic resonance spectroscopy and thermal gravimetric analysis. The dehydration performance of PIL and the original polymer was investigated using the bottle test method, including several factors such as demulsifier dose, brine content, temperature, and settling time. Results indicated that PIL achieved high performance in dehydrating crude oil emulsions.","PeriodicalId":7372,"journal":{"name":"Advances in Polymer Technology","volume":"13 1","pages":"0"},"PeriodicalIF":2.0000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance of Plastic Waste-Based Polyionic Liquid toward the Dehydration of Crude Oil Emulsions\",\"authors\":\"Mahmood M. S. Abdullah, Hamad A. Al-Lohedan, Mohd Sajid Ali\",\"doi\":\"10.1155/2023/3740956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polyethylene terephthalate (PET) is one of the most widely used plastics in the world. Due to the large production and use of this plastic, its waste represents one of the most critical environmental problems. The purpose of this study is to convert PET waste into a valuable material. The consumed PET was transformed into a precursor to synthesize a polyionic liquid (PIL) that was used for dehydrating crude oil emulsions. To do so, the consumed PET was converted to bis(2-hydroxyethyl) terephthalate (BHET). First, BHET and tetraethylene glycol were reacted separately with thionyl chloride, obtaining the corresponding alkyl halides, bis(2-chloroethyl) terephthalate, BCET, and TEC, respectively. Next, the obtained alkyl halides, BCET and TEC, were reacted with 1,5-pentanediamine, yielding a polymer (BTP). Finally, BTP was reacted with acetic acid to produce the corresponding PIL (BTP–PIL). The structure and thermal stability of BTP–PIL were characterized using nuclear magnetic resonance spectroscopy and thermal gravimetric analysis. The dehydration performance of PIL and the original polymer was investigated using the bottle test method, including several factors such as demulsifier dose, brine content, temperature, and settling time. Results indicated that PIL achieved high performance in dehydrating crude oil emulsions.\",\"PeriodicalId\":7372,\"journal\":{\"name\":\"Advances in Polymer Technology\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Polymer Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/3740956\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Polymer Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/3740956","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Performance of Plastic Waste-Based Polyionic Liquid toward the Dehydration of Crude Oil Emulsions
Polyethylene terephthalate (PET) is one of the most widely used plastics in the world. Due to the large production and use of this plastic, its waste represents one of the most critical environmental problems. The purpose of this study is to convert PET waste into a valuable material. The consumed PET was transformed into a precursor to synthesize a polyionic liquid (PIL) that was used for dehydrating crude oil emulsions. To do so, the consumed PET was converted to bis(2-hydroxyethyl) terephthalate (BHET). First, BHET and tetraethylene glycol were reacted separately with thionyl chloride, obtaining the corresponding alkyl halides, bis(2-chloroethyl) terephthalate, BCET, and TEC, respectively. Next, the obtained alkyl halides, BCET and TEC, were reacted with 1,5-pentanediamine, yielding a polymer (BTP). Finally, BTP was reacted with acetic acid to produce the corresponding PIL (BTP–PIL). The structure and thermal stability of BTP–PIL were characterized using nuclear magnetic resonance spectroscopy and thermal gravimetric analysis. The dehydration performance of PIL and the original polymer was investigated using the bottle test method, including several factors such as demulsifier dose, brine content, temperature, and settling time. Results indicated that PIL achieved high performance in dehydrating crude oil emulsions.
期刊介绍:
Advances in Polymer Technology publishes articles reporting important developments in polymeric materials, their manufacture and processing, and polymer product design, as well as those considering the economic and environmental impacts of polymer technology. The journal primarily caters to researchers, technologists, engineers, consultants, and production personnel.