磁驱动精确调控酶-纳米酶级联反应动力学以实现高效肿瘤治疗

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ye Zhang, Yanyun Wang, Qi Zhou, Xiaoyong Chen, Wangbo Jiao, Galong Li, Mingli Peng, Xiaoli Liu, Yuan He*, Haiming Fan*
{"title":"磁驱动精确调控酶-纳米酶级联反应动力学以实现高效肿瘤治疗","authors":"Ye Zhang,&nbsp;Yanyun Wang,&nbsp;Qi Zhou,&nbsp;Xiaoyong Chen,&nbsp;Wangbo Jiao,&nbsp;Galong Li,&nbsp;Mingli Peng,&nbsp;Xiaoli Liu,&nbsp;Yuan He*,&nbsp;Haiming Fan*","doi":"10.1021/acsami.1c15717","DOIUrl":null,"url":null,"abstract":"<p >Spatiotemporal regulation of multi-enzyme catalysis with stimuli is crucial in nature to meet different metabolic requirements but presents a challenge in artificial cascade systems. Here, we report a strategy for precise and tunable modulation of enzyme–nanozyme cascade reaction kinetics by remote magnetic stimulation. As a proof of concept, glucose oxidase (GOx) was immobilized onto a ferrimagnetic vortex iron oxide nanoring (Fe<sub>3</sub>O<sub>4</sub> NR) functionalized with poly(ethylene glycol) of different molecular weights to construct a series of Fe<sub>3</sub>O<sub>4</sub> [email?protected] with nanometer linking distances. The activities of GOx and the Fe<sub>3</sub>O<sub>4</sub> NR nanozyme in these systems were shown to be differentially stimulated by Fe<sub>3</sub>O<sub>4</sub> NR-mediated local heat in response to an alternating magnetic field (AMF), leading to modulated cascade reaction kinetics in a distance-dependent manner. Compared to the free GOx and Fe<sub>3</sub>O<sub>4</sub> NR mixture, Fe<sub>3</sub>O<sub>4</sub> NR(D2)@GOx with an optimum linking distance of 1 nm exhibits a superior kinetic match between GOx and the Fe<sub>3</sub>O<sub>4</sub> NR nanozyme and over a 400-fold higher cascade activity under AMF exposure. This enables remarkable intracellular reactive oxygen species production and significantly improved tumor inhibition of AMF-stimulated Fe<sub>3</sub>O<sub>4</sub> NR(D2)@GOx in 4T1 tumor-bearing mice. The strategy reported here offers a straightforward new tool for fine-tuning multi-enzyme catalysis at the molecular level using magnetic stimuli and holds great promise for use in a variety of biotechnology and synthetic biology applications.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"13 44","pages":"52395–52405"},"PeriodicalIF":8.3000,"publicationDate":"2021-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Precise Regulation of Enzyme–Nanozyme Cascade Reaction Kinetics by Magnetic Actuation toward Efficient Tumor Therapy\",\"authors\":\"Ye Zhang,&nbsp;Yanyun Wang,&nbsp;Qi Zhou,&nbsp;Xiaoyong Chen,&nbsp;Wangbo Jiao,&nbsp;Galong Li,&nbsp;Mingli Peng,&nbsp;Xiaoli Liu,&nbsp;Yuan He*,&nbsp;Haiming Fan*\",\"doi\":\"10.1021/acsami.1c15717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Spatiotemporal regulation of multi-enzyme catalysis with stimuli is crucial in nature to meet different metabolic requirements but presents a challenge in artificial cascade systems. Here, we report a strategy for precise and tunable modulation of enzyme–nanozyme cascade reaction kinetics by remote magnetic stimulation. As a proof of concept, glucose oxidase (GOx) was immobilized onto a ferrimagnetic vortex iron oxide nanoring (Fe<sub>3</sub>O<sub>4</sub> NR) functionalized with poly(ethylene glycol) of different molecular weights to construct a series of Fe<sub>3</sub>O<sub>4</sub> [email?protected] with nanometer linking distances. The activities of GOx and the Fe<sub>3</sub>O<sub>4</sub> NR nanozyme in these systems were shown to be differentially stimulated by Fe<sub>3</sub>O<sub>4</sub> NR-mediated local heat in response to an alternating magnetic field (AMF), leading to modulated cascade reaction kinetics in a distance-dependent manner. Compared to the free GOx and Fe<sub>3</sub>O<sub>4</sub> NR mixture, Fe<sub>3</sub>O<sub>4</sub> NR(D2)@GOx with an optimum linking distance of 1 nm exhibits a superior kinetic match between GOx and the Fe<sub>3</sub>O<sub>4</sub> NR nanozyme and over a 400-fold higher cascade activity under AMF exposure. This enables remarkable intracellular reactive oxygen species production and significantly improved tumor inhibition of AMF-stimulated Fe<sub>3</sub>O<sub>4</sub> NR(D2)@GOx in 4T1 tumor-bearing mice. The strategy reported here offers a straightforward new tool for fine-tuning multi-enzyme catalysis at the molecular level using magnetic stimuli and holds great promise for use in a variety of biotechnology and synthetic biology applications.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"13 44\",\"pages\":\"52395–52405\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2021-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.1c15717\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.1c15717","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 19

摘要

多酶催化的时空调节在自然界中是满足不同代谢需求的关键,但在人工级联系统中提出了挑战。在这里,我们报告了一种通过远程磁刺激精确调节酶-纳米酶级联反应动力学的策略。为了证明这一概念,葡萄糖氧化酶(GOx)被固定在一个由不同分子量聚乙二醇功能化的铁磁涡旋氧化铁纳米环(Fe3O4 NR)上,构建了一系列Fe3O4 [email?]用纳米级的连接距离保护。在这些系统中,GOx和Fe3O4 NR纳米酶的活性在交变磁场(AMF)下受到Fe3O4 NR介导的局部热的不同刺激,导致级联反应动力学以距离依赖的方式被调节。与游离GOx和Fe3O4 NR混合物相比,Fe3O4 NR(D2)@GOx的最佳连接距离为1 nm,在AMF暴露下,GOx与Fe3O4 NR纳米酶表现出更好的动力学匹配,级联活性高出400倍以上。在4T1荷瘤小鼠中,amf刺激的Fe3O4 NR(D2)@GOx产生了显著的细胞内活性氧,并显著改善了肿瘤抑制作用。本文报道的策略为利用磁刺激在分子水平上微调多酶催化提供了一种简单的新工具,并在各种生物技术和合成生物学应用中具有很大的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Precise Regulation of Enzyme–Nanozyme Cascade Reaction Kinetics by Magnetic Actuation toward Efficient Tumor Therapy

Precise Regulation of Enzyme–Nanozyme Cascade Reaction Kinetics by Magnetic Actuation toward Efficient Tumor Therapy

Spatiotemporal regulation of multi-enzyme catalysis with stimuli is crucial in nature to meet different metabolic requirements but presents a challenge in artificial cascade systems. Here, we report a strategy for precise and tunable modulation of enzyme–nanozyme cascade reaction kinetics by remote magnetic stimulation. As a proof of concept, glucose oxidase (GOx) was immobilized onto a ferrimagnetic vortex iron oxide nanoring (Fe3O4 NR) functionalized with poly(ethylene glycol) of different molecular weights to construct a series of Fe3O4 [email?protected] with nanometer linking distances. The activities of GOx and the Fe3O4 NR nanozyme in these systems were shown to be differentially stimulated by Fe3O4 NR-mediated local heat in response to an alternating magnetic field (AMF), leading to modulated cascade reaction kinetics in a distance-dependent manner. Compared to the free GOx and Fe3O4 NR mixture, Fe3O4 NR(D2)@GOx with an optimum linking distance of 1 nm exhibits a superior kinetic match between GOx and the Fe3O4 NR nanozyme and over a 400-fold higher cascade activity under AMF exposure. This enables remarkable intracellular reactive oxygen species production and significantly improved tumor inhibition of AMF-stimulated Fe3O4 NR(D2)@GOx in 4T1 tumor-bearing mice. The strategy reported here offers a straightforward new tool for fine-tuning multi-enzyme catalysis at the molecular level using magnetic stimuli and holds great promise for use in a variety of biotechnology and synthetic biology applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信