周期长度小于10的正交循环系

IF 0.5 4区 数学 Q3 MATHEMATICS
Selda Küçükçifçi, Emine Şule Yazıcı
{"title":"周期长度小于10的正交循环系","authors":"Selda Küçükçifçi,&nbsp;Emine Şule Yazıcı","doi":"10.1002/jcd.21921","DOIUrl":null,"url":null,"abstract":"<p>An <math>\n <semantics>\n <mrow>\n <mi>H</mi>\n </mrow>\n <annotation> $H$</annotation>\n </semantics></math>-decomposition of a graph <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is a partition of the edge set of <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> into subsets, where each subset induces a copy of the graph <math>\n <semantics>\n <mrow>\n <mi>H</mi>\n </mrow>\n <annotation> $H$</annotation>\n </semantics></math>. A <math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-orthogonal <math>\n <semantics>\n <mrow>\n <mi>H</mi>\n </mrow>\n <annotation> $H$</annotation>\n </semantics></math>-decomposition of <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is a set of <math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math><math>\n <semantics>\n <mrow>\n <mi>H</mi>\n </mrow>\n <annotation> $H$</annotation>\n </semantics></math>-decompositions of <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> such that any two copies of <math>\n <semantics>\n <mrow>\n <mi>H</mi>\n </mrow>\n <annotation> $H$</annotation>\n </semantics></math> in distinct <math>\n <semantics>\n <mrow>\n <mi>H</mi>\n </mrow>\n <annotation> $H$</annotation>\n </semantics></math>-decompositions intersect in at most one edge. When <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n <mo>=</mo>\n <msub>\n <mi>K</mi>\n <mi>v</mi>\n </msub>\n </mrow>\n <annotation> $G={K}_{v}$</annotation>\n </semantics></math>, we call the <math>\n <semantics>\n <mrow>\n <mi>H</mi>\n </mrow>\n <annotation> $H$</annotation>\n </semantics></math>-decomposition an <math>\n <semantics>\n <mrow>\n <mi>H</mi>\n </mrow>\n <annotation> $H$</annotation>\n </semantics></math>-system of order <math>\n <semantics>\n <mrow>\n <mi>v</mi>\n </mrow>\n <annotation> $v$</annotation>\n </semantics></math>. In this paper, we consider the case <math>\n <semantics>\n <mrow>\n <mi>H</mi>\n </mrow>\n <annotation> $H$</annotation>\n </semantics></math> is an <math>\n <semantics>\n <mrow>\n <mi>ℓ</mi>\n </mrow>\n <annotation> $\\ell $</annotation>\n </semantics></math>-cycle and construct a pair of orthogonal <math>\n <semantics>\n <mrow>\n <mi>ℓ</mi>\n </mrow>\n <annotation> $\\ell $</annotation>\n </semantics></math>-cycle systems for all admissible orders when <math>\n <semantics>\n <mrow>\n <mi>ℓ</mi>\n <mo>∈</mo>\n <mrow>\n <mo>{</mo>\n <mrow>\n <mn>5</mn>\n <mo>,</mo>\n <mn>6</mn>\n <mo>,</mo>\n <mn>7</mn>\n <mo>,</mo>\n <mn>8</mn>\n <mo>,</mo>\n <mn>9</mn>\n </mrow>\n <mo>}</mo>\n </mrow>\n </mrow>\n <annotation> $\\ell \\in \\{5,6,7,8,9\\}$</annotation>\n </semantics></math>, except when <math>\n <semantics>\n <mrow>\n <mi>ℓ</mi>\n <mo>=</mo>\n <mi>v</mi>\n </mrow>\n <annotation> $\\ell =v$</annotation>\n </semantics></math>.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"32 1","pages":"31-45"},"PeriodicalIF":0.5000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Orthogonal cycle systems with cycle length less than 10\",\"authors\":\"Selda Küçükçifçi,&nbsp;Emine Şule Yazıcı\",\"doi\":\"10.1002/jcd.21921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An <math>\\n <semantics>\\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n <annotation> $H$</annotation>\\n </semantics></math>-decomposition of a graph <math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> is a partition of the edge set of <math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> into subsets, where each subset induces a copy of the graph <math>\\n <semantics>\\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n <annotation> $H$</annotation>\\n </semantics></math>. A <math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-orthogonal <math>\\n <semantics>\\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n <annotation> $H$</annotation>\\n </semantics></math>-decomposition of <math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> is a set of <math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math><math>\\n <semantics>\\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n <annotation> $H$</annotation>\\n </semantics></math>-decompositions of <math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> such that any two copies of <math>\\n <semantics>\\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n <annotation> $H$</annotation>\\n </semantics></math> in distinct <math>\\n <semantics>\\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n <annotation> $H$</annotation>\\n </semantics></math>-decompositions intersect in at most one edge. When <math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n <mo>=</mo>\\n <msub>\\n <mi>K</mi>\\n <mi>v</mi>\\n </msub>\\n </mrow>\\n <annotation> $G={K}_{v}$</annotation>\\n </semantics></math>, we call the <math>\\n <semantics>\\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n <annotation> $H$</annotation>\\n </semantics></math>-decomposition an <math>\\n <semantics>\\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n <annotation> $H$</annotation>\\n </semantics></math>-system of order <math>\\n <semantics>\\n <mrow>\\n <mi>v</mi>\\n </mrow>\\n <annotation> $v$</annotation>\\n </semantics></math>. In this paper, we consider the case <math>\\n <semantics>\\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n <annotation> $H$</annotation>\\n </semantics></math> is an <math>\\n <semantics>\\n <mrow>\\n <mi>ℓ</mi>\\n </mrow>\\n <annotation> $\\\\ell $</annotation>\\n </semantics></math>-cycle and construct a pair of orthogonal <math>\\n <semantics>\\n <mrow>\\n <mi>ℓ</mi>\\n </mrow>\\n <annotation> $\\\\ell $</annotation>\\n </semantics></math>-cycle systems for all admissible orders when <math>\\n <semantics>\\n <mrow>\\n <mi>ℓ</mi>\\n <mo>∈</mo>\\n <mrow>\\n <mo>{</mo>\\n <mrow>\\n <mn>5</mn>\\n <mo>,</mo>\\n <mn>6</mn>\\n <mo>,</mo>\\n <mn>7</mn>\\n <mo>,</mo>\\n <mn>8</mn>\\n <mo>,</mo>\\n <mn>9</mn>\\n </mrow>\\n <mo>}</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\ell \\\\in \\\\{5,6,7,8,9\\\\}$</annotation>\\n </semantics></math>, except when <math>\\n <semantics>\\n <mrow>\\n <mi>ℓ</mi>\\n <mo>=</mo>\\n <mi>v</mi>\\n </mrow>\\n <annotation> $\\\\ell =v$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":15389,\"journal\":{\"name\":\"Journal of Combinatorial Designs\",\"volume\":\"32 1\",\"pages\":\"31-45\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Designs\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21921\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21921","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

图G$ G$的H$ H$分解是将G$ G$的边集划分为若干子集,其中每个子集归纳出图H$ H$的一个副本。G$ G$的k$ k$ -正交H$ H$分解是k$ k$ H$ H$的集合- G$ G$的分解使得H$ H$的任意两个副本在不同的H$ H$分解中最多相交于一条边。当G= K v $G={K}_{v}$时,我们称之为H$ H$分解和H$ H$ - v$ v$阶系统。在本文中,我们考虑了H$ H$是一个r $\ell $ -环的情况,并构造了一对r $\ell $ -环的正交系统{5,6,7,8,9}$ \ well \in \{5,6,7,8,9\}$,除了当r =v$ \ r =v$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Orthogonal cycle systems with cycle length less than 10

An H $H$ -decomposition of a graph G $G$ is a partition of the edge set of G $G$ into subsets, where each subset induces a copy of the graph H $H$ . A k $k$ -orthogonal H $H$ -decomposition of G $G$ is a set of k $k$ H $H$ -decompositions of G $G$ such that any two copies of H $H$ in distinct H $H$ -decompositions intersect in at most one edge. When G = K v $G={K}_{v}$ , we call the H $H$ -decomposition an H $H$ -system of order v $v$ . In this paper, we consider the case H $H$ is an $\ell $ -cycle and construct a pair of orthogonal $\ell $ -cycle systems for all admissible orders when { 5 , 6 , 7 , 8 , 9 } $\ell \in \{5,6,7,8,9\}$ , except when = v $\ell =v$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
14.30%
发文量
55
审稿时长
>12 weeks
期刊介绍: The Journal of Combinatorial Designs is an international journal devoted to the timely publication of the most influential papers in the area of combinatorial design theory. All topics in design theory, and in which design theory has important applications, are covered, including: block designs, t-designs, pairwise balanced designs and group divisible designs Latin squares, quasigroups, and related algebras computational methods in design theory construction methods applications in computer science, experimental design theory, and coding theory graph decompositions, factorizations, and design-theoretic techniques in graph theory and extremal combinatorics finite geometry and its relation with design theory. algebraic aspects of design theory. Researchers and scientists can depend on the Journal of Combinatorial Designs for the most recent developments in this rapidly growing field, and to provide a forum for both theoretical research and applications. All papers appearing in the Journal of Combinatorial Designs are carefully peer refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信