具有移动接触线的Allen-Cahn-Navier-Stokes-Voigt系统

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ciprian G. Gal, Maurizio Grasselli, Andrea Poiatti
{"title":"具有移动接触线的Allen-Cahn-Navier-Stokes-Voigt系统","authors":"Ciprian G. Gal,&nbsp;Maurizio Grasselli,&nbsp;Andrea Poiatti","doi":"10.1007/s00021-023-00829-0","DOIUrl":null,"url":null,"abstract":"<div><p>We consider a diffuse interface model for an incompressible binary fluid flow. The model consists of the Navier–Stokes–Voigt equations coupled with the mass-conserving Allen–Cahn equation with Flory–Huggins potential. The resulting system is subject to generalized Navier boundary conditions for the (volume averaged) fluid velocity <span>\\({{\\textbf {u}}}\\)</span> and to a dynamic contact line boundary condition for the order parameter <span>\\(\\phi \\)</span>. These boundary conditions account for the moving contact line phenomenon. We establish the existence of a global weak solution which satisfies an energy inequality. A similar result is proven for the Allen–Cahn–Navier–Stokes system. In order to obtain some higher-order regularity (w.r.t. time) we propose the Voigt approximation: in this way we are able to prove the validity of the energy identity and of the strict separation property. Thanks to this property, we can show the uniqueness of quasi-strong solutions, even in dimension three. Regularization in finite time of weak solutions is also shown.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Allen–Cahn–Navier–Stokes–Voigt Systems with Moving Contact Lines\",\"authors\":\"Ciprian G. Gal,&nbsp;Maurizio Grasselli,&nbsp;Andrea Poiatti\",\"doi\":\"10.1007/s00021-023-00829-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider a diffuse interface model for an incompressible binary fluid flow. The model consists of the Navier–Stokes–Voigt equations coupled with the mass-conserving Allen–Cahn equation with Flory–Huggins potential. The resulting system is subject to generalized Navier boundary conditions for the (volume averaged) fluid velocity <span>\\\\({{\\\\textbf {u}}}\\\\)</span> and to a dynamic contact line boundary condition for the order parameter <span>\\\\(\\\\phi \\\\)</span>. These boundary conditions account for the moving contact line phenomenon. We establish the existence of a global weak solution which satisfies an energy inequality. A similar result is proven for the Allen–Cahn–Navier–Stokes system. In order to obtain some higher-order regularity (w.r.t. time) we propose the Voigt approximation: in this way we are able to prove the validity of the energy identity and of the strict separation property. Thanks to this property, we can show the uniqueness of quasi-strong solutions, even in dimension three. Regularization in finite time of weak solutions is also shown.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00021-023-00829-0\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-023-00829-0","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

摘要

考虑不可压缩二元流体流动的扩散界面模型。该模型由Navier-Stokes-Voigt方程和具有Flory-Huggins势的质量守恒Allen-Cahn方程组成。得到的系统对(体积平均)流体速度\({{\textbf {u}}}\)服从广义Navier边界条件,对阶参数\(\phi \)服从动态接触线边界条件。这些边界条件解释了移动接触线现象。我们建立了一个满足能量不等式的全局弱解的存在性。对于Allen-Cahn-Navier-Stokes系统也证明了类似的结果。为了得到高阶正则性(w.r.t.时间),我们提出了Voigt近似,从而证明了能量恒等式和严格分离性质的有效性。由于这个性质,我们可以证明拟强解的唯一性,即使在三维空间。给出了弱解在有限时间内的正则性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Allen–Cahn–Navier–Stokes–Voigt Systems with Moving Contact Lines

We consider a diffuse interface model for an incompressible binary fluid flow. The model consists of the Navier–Stokes–Voigt equations coupled with the mass-conserving Allen–Cahn equation with Flory–Huggins potential. The resulting system is subject to generalized Navier boundary conditions for the (volume averaged) fluid velocity \({{\textbf {u}}}\) and to a dynamic contact line boundary condition for the order parameter \(\phi \). These boundary conditions account for the moving contact line phenomenon. We establish the existence of a global weak solution which satisfies an energy inequality. A similar result is proven for the Allen–Cahn–Navier–Stokes system. In order to obtain some higher-order regularity (w.r.t. time) we propose the Voigt approximation: in this way we are able to prove the validity of the energy identity and of the strict separation property. Thanks to this property, we can show the uniqueness of quasi-strong solutions, even in dimension three. Regularization in finite time of weak solutions is also shown.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信