涉及Lebedev-Skalskaya变换的分数极大算子和Riesz势算子

IF 0.8 4区 综合性期刊 Q3 MULTIDISCIPLINARY SCIENCES
Ajay K. Gupt, Akhilesh Prasad, U. K. Mandal
{"title":"涉及Lebedev-Skalskaya变换的分数极大算子和Riesz势算子","authors":"Ajay K. Gupt,&nbsp;Akhilesh Prasad,&nbsp;U. K. Mandal","doi":"10.1007/s40010-023-00851-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, the boundedness of the fractional maximal function and Riesz potential for the LS transform from <span>\\(L^p(\\mathbb {R}_+;\\frac{\\exp ({-x \\cos (\\rho )})}{\\sqrt{x}}\\mathrm{{dx}})\\)</span> to <span>\\(L^p(\\mathbb {R}_+;x^{\\frac{p}{2}}\\mathrm{{dx}})\\)</span> and from <span>\\(L^1(\\mathbb {R}_+;\\frac{\\exp ({-x \\cos (\\rho )})}{\\sqrt{x}}\\mathrm{{dx}})\\)</span> to the weak space <span>\\(\\mathrm{{WL}}^1(\\mathbb {R}_+;x^{\\frac{1}{2}}\\mathrm{{dx}})\\)</span> are studied. <i>Relevance of the work</i> In this work, we define the fractional integral and the fractional maximal operators using the translation operator associated with LS transform. The boundedness of these integral operators is investigated in the framework of Lebesgue spaces. These fractional integral operators are applied to the study of partial differential equations and Sobolev spaces.</p></div>","PeriodicalId":744,"journal":{"name":"Proceedings of the National Academy of Sciences, India Section A: Physical Sciences","volume":"93 4","pages":"613 - 620"},"PeriodicalIF":0.8000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Fractional Maximal and Riesz Potential Operators Involving the Lebedev–Skalskaya Transform\",\"authors\":\"Ajay K. Gupt,&nbsp;Akhilesh Prasad,&nbsp;U. K. Mandal\",\"doi\":\"10.1007/s40010-023-00851-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, the boundedness of the fractional maximal function and Riesz potential for the LS transform from <span>\\\\(L^p(\\\\mathbb {R}_+;\\\\frac{\\\\exp ({-x \\\\cos (\\\\rho )})}{\\\\sqrt{x}}\\\\mathrm{{dx}})\\\\)</span> to <span>\\\\(L^p(\\\\mathbb {R}_+;x^{\\\\frac{p}{2}}\\\\mathrm{{dx}})\\\\)</span> and from <span>\\\\(L^1(\\\\mathbb {R}_+;\\\\frac{\\\\exp ({-x \\\\cos (\\\\rho )})}{\\\\sqrt{x}}\\\\mathrm{{dx}})\\\\)</span> to the weak space <span>\\\\(\\\\mathrm{{WL}}^1(\\\\mathbb {R}_+;x^{\\\\frac{1}{2}}\\\\mathrm{{dx}})\\\\)</span> are studied. <i>Relevance of the work</i> In this work, we define the fractional integral and the fractional maximal operators using the translation operator associated with LS transform. The boundedness of these integral operators is investigated in the framework of Lebesgue spaces. These fractional integral operators are applied to the study of partial differential equations and Sobolev spaces.</p></div>\",\"PeriodicalId\":744,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences, India Section A: Physical Sciences\",\"volume\":\"93 4\",\"pages\":\"613 - 620\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences, India Section A: Physical Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40010-023-00851-x\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences, India Section A: Physical Sciences","FirstCategoryId":"103","ListUrlMain":"https://link.springer.com/article/10.1007/s40010-023-00851-x","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了从\(L^p(\mathbb {R}_+;\frac{\exp ({-x \cos (\rho )})}{\sqrt{x}}\mathrm{{dx}})\)到\(L^p(\mathbb {R}_+;x^{\frac{p}{2}}\mathrm{{dx}})\)和从\(L^1(\mathbb {R}_+;\frac{\exp ({-x \cos (\rho )})}{\sqrt{x}}\mathrm{{dx}})\)到弱空间\(\mathrm{{WL}}^1(\mathbb {R}_+;x^{\frac{1}{2}}\mathrm{{dx}})\)的LS变换的分数极大函数和Riesz势的有界性。在这项工作中,我们使用与LS变换相关的平移算子定义了分数阶积分算子和分数阶极大算子。在Lebesgue空间的框架下研究了这些积分算子的有界性。这些分数阶积分算子应用于偏微分方程和Sobolev空间的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Fractional Maximal and Riesz Potential Operators Involving the Lebedev–Skalskaya Transform

In this paper, the boundedness of the fractional maximal function and Riesz potential for the LS transform from \(L^p(\mathbb {R}_+;\frac{\exp ({-x \cos (\rho )})}{\sqrt{x}}\mathrm{{dx}})\) to \(L^p(\mathbb {R}_+;x^{\frac{p}{2}}\mathrm{{dx}})\) and from \(L^1(\mathbb {R}_+;\frac{\exp ({-x \cos (\rho )})}{\sqrt{x}}\mathrm{{dx}})\) to the weak space \(\mathrm{{WL}}^1(\mathbb {R}_+;x^{\frac{1}{2}}\mathrm{{dx}})\) are studied. Relevance of the work In this work, we define the fractional integral and the fractional maximal operators using the translation operator associated with LS transform. The boundedness of these integral operators is investigated in the framework of Lebesgue spaces. These fractional integral operators are applied to the study of partial differential equations and Sobolev spaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
37
审稿时长
>12 weeks
期刊介绍: To promote research in all the branches of Science & Technology; and disseminate the knowledge and advancements in Science & Technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信