{"title":"氧化硼酸盐岩热膨胀的各向异性","authors":"Y. P. Biryukov, R. S. Bubnova, S. K. Filatov","doi":"10.1134/S1087659623600503","DOIUrl":null,"url":null,"abstract":"<p>In this paper, the transition metal oxoborate warwickite (Fe<sup>2+</sup>,Mg)Fe<sup>3+</sup>(BO<sub>3</sub>)O is studied for the first time by low- and high-temperature X-ray diffraction in the temperature range from 93 to 513 K. The sharply anisotropic nature of its thermal expansion is revealed. A structural interpretation of the expansion mechanism is given both in terms of the contribution of cationic and oxocentered polyhedra.</p>","PeriodicalId":580,"journal":{"name":"Glass Physics and Chemistry","volume":"49 5","pages":"514 - 519"},"PeriodicalIF":0.8000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anisotropy of Thermal Expansion of Oxoborate Warwickite\",\"authors\":\"Y. P. Biryukov, R. S. Bubnova, S. K. Filatov\",\"doi\":\"10.1134/S1087659623600503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, the transition metal oxoborate warwickite (Fe<sup>2+</sup>,Mg)Fe<sup>3+</sup>(BO<sub>3</sub>)O is studied for the first time by low- and high-temperature X-ray diffraction in the temperature range from 93 to 513 K. The sharply anisotropic nature of its thermal expansion is revealed. A structural interpretation of the expansion mechanism is given both in terms of the contribution of cationic and oxocentered polyhedra.</p>\",\"PeriodicalId\":580,\"journal\":{\"name\":\"Glass Physics and Chemistry\",\"volume\":\"49 5\",\"pages\":\"514 - 519\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Glass Physics and Chemistry\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1087659623600503\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glass Physics and Chemistry","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1087659623600503","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Anisotropy of Thermal Expansion of Oxoborate Warwickite
In this paper, the transition metal oxoborate warwickite (Fe2+,Mg)Fe3+(BO3)O is studied for the first time by low- and high-temperature X-ray diffraction in the temperature range from 93 to 513 K. The sharply anisotropic nature of its thermal expansion is revealed. A structural interpretation of the expansion mechanism is given both in terms of the contribution of cationic and oxocentered polyhedra.
期刊介绍:
Glass Physics and Chemistry presents results of research on the inorganic and physical chemistry of glass, ceramics, nanoparticles, nanocomposites, and high-temperature oxides and coatings. The journal welcomes manuscripts from all countries in the English or Russian language.