两种蘑菇平菇和双孢蘑菇生物量作为生物吸附剂对水溶液中重金属(Pb、Cd、Hg)的菌体过滤

IF 0.5 4区 化学 Q4 CHEMISTRY, ANALYTICAL
Ayesha Sarwar, Brian Gagosh Nayyar, Humayun Irshad, Pervez Anwar, Noshaba Olihk, Maryam Ajmal
{"title":"两种蘑菇平菇和双孢蘑菇生物量作为生物吸附剂对水溶液中重金属(Pb、Cd、Hg)的菌体过滤","authors":"Ayesha Sarwar,&nbsp;Brian Gagosh Nayyar,&nbsp;Humayun Irshad,&nbsp;Pervez Anwar,&nbsp;Noshaba Olihk,&nbsp;Maryam Ajmal","doi":"10.3103/S1063455X23060097","DOIUrl":null,"url":null,"abstract":"<p>Industrial effluents have caused water bodies to suffer from accumulation of heavy metals such as cadmium (Cd), lead (Pb), and mercury (Hg). This study focuses on determination of the potential use of mycofiltration in the removal of heavy metals, the effect of contact time, and the efficiency of mushroom species in mycofiltration from an artificial wet pond. In search of effective biosorbents, mycofilters were developed by adding spawns of <i>P. ostreatus</i> and <i>A. bisporus,</i> which were left for incubation and then installed in synthetic ponds for a certain period. Thereafter, mushrooms were harvested, post treated and their biosorption rate was analyzed through atomic absorption spectrophotometer. Significant differences were evaluated in the biosorption rate of mycofilters of <i>P. ostreatus</i> and <i>A. bisporus</i>. A dependent relationship was also established between biosorption and the temperature, namely, an increase in biosorption with an increase in temperature. The comparison of all results for the two species revealed that <i>P. ostreatus</i> showed superiority in the biosorption capacity for Pb 9–189 mg g<sup>–1</sup> and Cd 1–21.4 mg g<sup>–1</sup> over <i>A. bisporus</i>. However, <i>A. bisporus</i> has shown significant results in the case of Hg 0.6–10 mg g<sup>–1</sup> absorption. Overall, in this study, <i>P. ostreatus</i> demonstrated the highest range in biosorption efficiency for metals Pb 99–100% and Cd 97–100% as compared to <i>A. bisporus</i>. At the same time, <i>A. bisporus</i> showed a slightly higher level of removal efficiency in the case of Hg 85–100%. Considering these findings, industrialists may use this cheap and ecofriendly treatment technology for the uptake of heavy metals.</p>","PeriodicalId":680,"journal":{"name":"Journal of Water Chemistry and Technology","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mycofiltration of Heavy Metals (Pb, Cd, Hg) from Aqueous Solution by Living Biomass of Two Mushrooms Pleurotus ostreatus and Agaricus bisporus as Biosorbents\",\"authors\":\"Ayesha Sarwar,&nbsp;Brian Gagosh Nayyar,&nbsp;Humayun Irshad,&nbsp;Pervez Anwar,&nbsp;Noshaba Olihk,&nbsp;Maryam Ajmal\",\"doi\":\"10.3103/S1063455X23060097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Industrial effluents have caused water bodies to suffer from accumulation of heavy metals such as cadmium (Cd), lead (Pb), and mercury (Hg). This study focuses on determination of the potential use of mycofiltration in the removal of heavy metals, the effect of contact time, and the efficiency of mushroom species in mycofiltration from an artificial wet pond. In search of effective biosorbents, mycofilters were developed by adding spawns of <i>P. ostreatus</i> and <i>A. bisporus,</i> which were left for incubation and then installed in synthetic ponds for a certain period. Thereafter, mushrooms were harvested, post treated and their biosorption rate was analyzed through atomic absorption spectrophotometer. Significant differences were evaluated in the biosorption rate of mycofilters of <i>P. ostreatus</i> and <i>A. bisporus</i>. A dependent relationship was also established between biosorption and the temperature, namely, an increase in biosorption with an increase in temperature. The comparison of all results for the two species revealed that <i>P. ostreatus</i> showed superiority in the biosorption capacity for Pb 9–189 mg g<sup>–1</sup> and Cd 1–21.4 mg g<sup>–1</sup> over <i>A. bisporus</i>. However, <i>A. bisporus</i> has shown significant results in the case of Hg 0.6–10 mg g<sup>–1</sup> absorption. Overall, in this study, <i>P. ostreatus</i> demonstrated the highest range in biosorption efficiency for metals Pb 99–100% and Cd 97–100% as compared to <i>A. bisporus</i>. At the same time, <i>A. bisporus</i> showed a slightly higher level of removal efficiency in the case of Hg 85–100%. Considering these findings, industrialists may use this cheap and ecofriendly treatment technology for the uptake of heavy metals.</p>\",\"PeriodicalId\":680,\"journal\":{\"name\":\"Journal of Water Chemistry and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water Chemistry and Technology\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1063455X23060097\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Chemistry and Technology","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.3103/S1063455X23060097","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

工业废水使水体遭受镉(Cd)、铅(Pb)和汞(Hg)等重金属的积累。本研究的重点是确定真菌过滤在去除重金属方面的潜在用途,接触时间的影响,以及真菌过滤在人工湿池中的效率。为了寻找有效的生物吸附剂,通过添加P. ostreatus和a . bisporus的产卵,将其孵育,然后在合成池中放置一段时间,开发了真菌过滤器。采集蘑菇,处理后用原子吸收分光光度计测定其生物吸收率。结果表明,双孢菇和假单胞菌的生物吸附率存在显著差异。生物吸附性与温度之间也建立了依赖关系,即随着温度的升高,生物吸附性增加。结果表明,双孢霉对Pb 9 ~ 189 mg g-1和Cd 1 ~ 21.4 mg g-1的吸附能力优于双孢霉。然而,双孢霉在Hg 0.6-10 mg g-1的吸收情况下显示出显著的结果。总体而言,在本研究中,P. ostreatus对金属Pb(99% ~ 100%)和Cd(97% ~ 100%)的生物吸附效率均高于A. bisporus。同时,双孢霉对Hg的去除率在85 ~ 100%时略高。考虑到这些发现,实业家可能会使用这种廉价和环保的处理技术来吸收重金属。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Mycofiltration of Heavy Metals (Pb, Cd, Hg) from Aqueous Solution by Living Biomass of Two Mushrooms Pleurotus ostreatus and Agaricus bisporus as Biosorbents

Mycofiltration of Heavy Metals (Pb, Cd, Hg) from Aqueous Solution by Living Biomass of Two Mushrooms Pleurotus ostreatus and Agaricus bisporus as Biosorbents

Industrial effluents have caused water bodies to suffer from accumulation of heavy metals such as cadmium (Cd), lead (Pb), and mercury (Hg). This study focuses on determination of the potential use of mycofiltration in the removal of heavy metals, the effect of contact time, and the efficiency of mushroom species in mycofiltration from an artificial wet pond. In search of effective biosorbents, mycofilters were developed by adding spawns of P. ostreatus and A. bisporus, which were left for incubation and then installed in synthetic ponds for a certain period. Thereafter, mushrooms were harvested, post treated and their biosorption rate was analyzed through atomic absorption spectrophotometer. Significant differences were evaluated in the biosorption rate of mycofilters of P. ostreatus and A. bisporus. A dependent relationship was also established between biosorption and the temperature, namely, an increase in biosorption with an increase in temperature. The comparison of all results for the two species revealed that P. ostreatus showed superiority in the biosorption capacity for Pb 9–189 mg g–1 and Cd 1–21.4 mg g–1 over A. bisporus. However, A. bisporus has shown significant results in the case of Hg 0.6–10 mg g–1 absorption. Overall, in this study, P. ostreatus demonstrated the highest range in biosorption efficiency for metals Pb 99–100% and Cd 97–100% as compared to A. bisporus. At the same time, A. bisporus showed a slightly higher level of removal efficiency in the case of Hg 85–100%. Considering these findings, industrialists may use this cheap and ecofriendly treatment technology for the uptake of heavy metals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Water Chemistry and Technology
Journal of Water Chemistry and Technology CHEMISTRY, APPLIED-CHEMISTRY, ANALYTICAL
自引率
0.00%
发文量
51
审稿时长
>12 weeks
期刊介绍: Journal of Water Chemistry and Technology focuses on water and wastewater treatment, water pollution monitoring, water purification, and similar topics. The journal publishes original scientific theoretical and experimental articles in the following sections: new developments in the science of water; theoretical principles of water treatment and technology; physical chemistry of water treatment processes; analytical water chemistry; analysis of natural and waste waters; water treatment technology and demineralization of water; biological methods of water treatment; and also solicited critical reviews summarizing the latest findings. The journal welcomes manuscripts from all countries in the English or Ukrainian language. All manuscripts are peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信