Wei Liao, Yutao Zheng, Chenglian Feng, Wenjun Zhong, Ziwei Zhu, Huiyu Xie, Wenpan Li, Xiaowei Jin, John P. Giesy
{"title":"常被高估的中国地表水中铜的生态风险:由水质参数的多元线性回归确定的生物有效组分","authors":"Wei Liao, Yutao Zheng, Chenglian Feng, Wenjun Zhong, Ziwei Zhu, Huiyu Xie, Wenpan Li, Xiaowei Jin, John P. Giesy","doi":"10.1186/s12302-023-00792-7","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Risks of adverse ecological effects of copper (Cu) consider of water quality parameters were not fully understood in China. Here, a national-scale exposure of Cu in Chinese surface water was investigated, and the first report using multiple linear regression approach to predict and correct toxicity data based on water chemistries in China. Risk of Cu was overestimated without considering water quality parameters in the previous studies.</p><h3>Results</h3><p>Under prevalent water quality conditions of hardness = 150.0 mg/L, pH = 7.8, and dissolved organic carbon (DOC) = 3.0 mg/L, across China, the predicted no effect concentration for total, dissolved Cu was 9.71 μg/L. Based on results of the preliminary risk quotients method, 1.19% (a total of 43 in 3610 sites) were classified as “high risk”, only one sixth of the percentage of sites with “high risk” than the proportion predicted when not considering water quality parameters, which was 7.51%. Similar results were obtained by application of both the margin of safety method (0.71% compared to 2.81%) and joint probability curve method (3.34% compared to 16.29%), both of which overestimated risks posed by Cu to aquatic organisms in China.</p><h3>Conclusion</h3><p>After correcting for bioavailability based on water quality parameters, consider both concentrations and frequencies during ecological risk assessment, regions of China at greatest risk from adverse effects of Cu were the Hai River (<i>Haihe</i>), Huai Rivers (<i>Huaihe</i>) and Chao Lake. These findings provide a comprehensive method for a more accurate assessment of risks of adverse effects of Cu to aquatic life in surface waters.</p></div>","PeriodicalId":54293,"journal":{"name":"Environmental Sciences Europe","volume":"35 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://enveurope.springeropen.com/counter/pdf/10.1186/s12302-023-00792-7","citationCount":"0","resultStr":"{\"title\":\"An often-overestimated ecological risk of copper in Chinese surface water: bioavailable fraction determined by multiple linear regression of water quality parameters\",\"authors\":\"Wei Liao, Yutao Zheng, Chenglian Feng, Wenjun Zhong, Ziwei Zhu, Huiyu Xie, Wenpan Li, Xiaowei Jin, John P. Giesy\",\"doi\":\"10.1186/s12302-023-00792-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Risks of adverse ecological effects of copper (Cu) consider of water quality parameters were not fully understood in China. Here, a national-scale exposure of Cu in Chinese surface water was investigated, and the first report using multiple linear regression approach to predict and correct toxicity data based on water chemistries in China. Risk of Cu was overestimated without considering water quality parameters in the previous studies.</p><h3>Results</h3><p>Under prevalent water quality conditions of hardness = 150.0 mg/L, pH = 7.8, and dissolved organic carbon (DOC) = 3.0 mg/L, across China, the predicted no effect concentration for total, dissolved Cu was 9.71 μg/L. Based on results of the preliminary risk quotients method, 1.19% (a total of 43 in 3610 sites) were classified as “high risk”, only one sixth of the percentage of sites with “high risk” than the proportion predicted when not considering water quality parameters, which was 7.51%. Similar results were obtained by application of both the margin of safety method (0.71% compared to 2.81%) and joint probability curve method (3.34% compared to 16.29%), both of which overestimated risks posed by Cu to aquatic organisms in China.</p><h3>Conclusion</h3><p>After correcting for bioavailability based on water quality parameters, consider both concentrations and frequencies during ecological risk assessment, regions of China at greatest risk from adverse effects of Cu were the Hai River (<i>Haihe</i>), Huai Rivers (<i>Huaihe</i>) and Chao Lake. These findings provide a comprehensive method for a more accurate assessment of risks of adverse effects of Cu to aquatic life in surface waters.</p></div>\",\"PeriodicalId\":54293,\"journal\":{\"name\":\"Environmental Sciences Europe\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://enveurope.springeropen.com/counter/pdf/10.1186/s12302-023-00792-7\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Sciences Europe\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s12302-023-00792-7\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Sciences Europe","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1186/s12302-023-00792-7","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
An often-overestimated ecological risk of copper in Chinese surface water: bioavailable fraction determined by multiple linear regression of water quality parameters
Background
Risks of adverse ecological effects of copper (Cu) consider of water quality parameters were not fully understood in China. Here, a national-scale exposure of Cu in Chinese surface water was investigated, and the first report using multiple linear regression approach to predict and correct toxicity data based on water chemistries in China. Risk of Cu was overestimated without considering water quality parameters in the previous studies.
Results
Under prevalent water quality conditions of hardness = 150.0 mg/L, pH = 7.8, and dissolved organic carbon (DOC) = 3.0 mg/L, across China, the predicted no effect concentration for total, dissolved Cu was 9.71 μg/L. Based on results of the preliminary risk quotients method, 1.19% (a total of 43 in 3610 sites) were classified as “high risk”, only one sixth of the percentage of sites with “high risk” than the proportion predicted when not considering water quality parameters, which was 7.51%. Similar results were obtained by application of both the margin of safety method (0.71% compared to 2.81%) and joint probability curve method (3.34% compared to 16.29%), both of which overestimated risks posed by Cu to aquatic organisms in China.
Conclusion
After correcting for bioavailability based on water quality parameters, consider both concentrations and frequencies during ecological risk assessment, regions of China at greatest risk from adverse effects of Cu were the Hai River (Haihe), Huai Rivers (Huaihe) and Chao Lake. These findings provide a comprehensive method for a more accurate assessment of risks of adverse effects of Cu to aquatic life in surface waters.
期刊介绍:
ESEU is an international journal, focusing primarily on Europe, with a broad scope covering all aspects of environmental sciences, including the main topic regulation.
ESEU will discuss the entanglement between environmental sciences and regulation because, in recent years, there have been misunderstandings and even disagreement between stakeholders in these two areas. ESEU will help to improve the comprehension of issues between environmental sciences and regulation.
ESEU will be an outlet from the German-speaking (DACH) countries to Europe and an inlet from Europe to the DACH countries regarding environmental sciences and regulation.
Moreover, ESEU will facilitate the exchange of ideas and interaction between Europe and the DACH countries regarding environmental regulatory issues.
Although Europe is at the center of ESEU, the journal will not exclude the rest of the world, because regulatory issues pertaining to environmental sciences can be fully seen only from a global perspective.