{"title":"红砂岩断裂机理实验识别的智能方法","authors":"Zida Liu, Diyuan Li, Quanqi Zhu, Chenxi Zhang, Jinyin Ma, Junjie Zhao","doi":"10.1007/s12613-023-2668-8","DOIUrl":null,"url":null,"abstract":"<div><p>Tensile and shear fractures are significant mechanisms for rock failure. Understanding the fractures that occur in rock can reveal rock failure mechanisms. Scanning electron microscopy (SEM) has been widely used to analyze tensile and shear fractures of rock on a mesoscopic scale. To quantify tensile and shear fractures, this study proposed an innovative method composed of SEM images and deep learning techniques to identify tensile and shear fractures in red sandstone. First, direct tensile and preset angle shear tests were performed for red sandstone to produce representative tensile and shear fracture surfaces, which were then observed by SEM. Second, these obtained SEM images were applied to develop deep learning models (AlexNet, VGG13, and SqueezeNet). Model evaluation showed that VGG13 was the best model, with a testing accuracy of 0.985. Third, the features of tensile and shear fractures of red sandstone learned by VGG13 were analyzed by the integrated gradient algorithm. VGG13 was then implemented to identify the distribution and proportion of tensile and shear fractures on the failure surfaces of rock fragments caused by uniaxial compression and Brazilian splitting tests. Results demonstrated the model feasibility and suggested that the proposed method can reveal rock failure mechanisms.</p></div>","PeriodicalId":14030,"journal":{"name":"International Journal of Minerals, Metallurgy, and Materials","volume":"30 11","pages":"2134 - 2146"},"PeriodicalIF":5.6000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intelligent method to experimentally identify the fracture mechanism of red sandstone\",\"authors\":\"Zida Liu, Diyuan Li, Quanqi Zhu, Chenxi Zhang, Jinyin Ma, Junjie Zhao\",\"doi\":\"10.1007/s12613-023-2668-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Tensile and shear fractures are significant mechanisms for rock failure. Understanding the fractures that occur in rock can reveal rock failure mechanisms. Scanning electron microscopy (SEM) has been widely used to analyze tensile and shear fractures of rock on a mesoscopic scale. To quantify tensile and shear fractures, this study proposed an innovative method composed of SEM images and deep learning techniques to identify tensile and shear fractures in red sandstone. First, direct tensile and preset angle shear tests were performed for red sandstone to produce representative tensile and shear fracture surfaces, which were then observed by SEM. Second, these obtained SEM images were applied to develop deep learning models (AlexNet, VGG13, and SqueezeNet). Model evaluation showed that VGG13 was the best model, with a testing accuracy of 0.985. Third, the features of tensile and shear fractures of red sandstone learned by VGG13 were analyzed by the integrated gradient algorithm. VGG13 was then implemented to identify the distribution and proportion of tensile and shear fractures on the failure surfaces of rock fragments caused by uniaxial compression and Brazilian splitting tests. Results demonstrated the model feasibility and suggested that the proposed method can reveal rock failure mechanisms.</p></div>\",\"PeriodicalId\":14030,\"journal\":{\"name\":\"International Journal of Minerals, Metallurgy, and Materials\",\"volume\":\"30 11\",\"pages\":\"2134 - 2146\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2023-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Minerals, Metallurgy, and Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12613-023-2668-8\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Minerals, Metallurgy, and Materials","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12613-023-2668-8","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Intelligent method to experimentally identify the fracture mechanism of red sandstone
Tensile and shear fractures are significant mechanisms for rock failure. Understanding the fractures that occur in rock can reveal rock failure mechanisms. Scanning electron microscopy (SEM) has been widely used to analyze tensile and shear fractures of rock on a mesoscopic scale. To quantify tensile and shear fractures, this study proposed an innovative method composed of SEM images and deep learning techniques to identify tensile and shear fractures in red sandstone. First, direct tensile and preset angle shear tests were performed for red sandstone to produce representative tensile and shear fracture surfaces, which were then observed by SEM. Second, these obtained SEM images were applied to develop deep learning models (AlexNet, VGG13, and SqueezeNet). Model evaluation showed that VGG13 was the best model, with a testing accuracy of 0.985. Third, the features of tensile and shear fractures of red sandstone learned by VGG13 were analyzed by the integrated gradient algorithm. VGG13 was then implemented to identify the distribution and proportion of tensile and shear fractures on the failure surfaces of rock fragments caused by uniaxial compression and Brazilian splitting tests. Results demonstrated the model feasibility and suggested that the proposed method can reveal rock failure mechanisms.
期刊介绍:
International Journal of Minerals, Metallurgy and Materials (Formerly known as Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material) provides an international medium for the publication of theoretical and experimental studies related to the fields of Minerals, Metallurgy and Materials. Papers dealing with minerals processing, mining, mine safety, environmental pollution and protection of mines, process metallurgy, metallurgical physical chemistry, structure and physical properties of materials, corrosion and resistance of materials, are viewed as suitable for publication.