三维燃烧模型有界区域强解的整体存在性及serrin型爆破判据

IF 1.2 3区 数学 Q2 MATHEMATICS, APPLIED
Jiawen Zhang
{"title":"三维燃烧模型有界区域强解的整体存在性及serrin型爆破判据","authors":"Jiawen Zhang","doi":"10.1007/s00021-023-00830-7","DOIUrl":null,"url":null,"abstract":"<div><p>The combustion model is studied in three-dimensional (3D) smooth bounded domains with various types of boundary conditions. The global existence and uniqueness of strong solutions are obtained under the smallness of the gradient of initial velocity in some precise sense. Using the energy method with the estimates of boundary integrals, we obtain the a priori bounds of the density and velocity field. Finally, we establish the blowup criterion for the 3D combustion system.</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"25 4","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global Existence of Strong Solutions and Serrin-Type Blowup Criterion for 3D Combustion Model in Bounded Domains\",\"authors\":\"Jiawen Zhang\",\"doi\":\"10.1007/s00021-023-00830-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The combustion model is studied in three-dimensional (3D) smooth bounded domains with various types of boundary conditions. The global existence and uniqueness of strong solutions are obtained under the smallness of the gradient of initial velocity in some precise sense. Using the energy method with the estimates of boundary integrals, we obtain the a priori bounds of the density and velocity field. Finally, we establish the blowup criterion for the 3D combustion system.</p></div>\",\"PeriodicalId\":649,\"journal\":{\"name\":\"Journal of Mathematical Fluid Mechanics\",\"volume\":\"25 4\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Fluid Mechanics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00021-023-00830-7\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Fluid Mechanics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-023-00830-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在具有不同边界条件的三维光滑边界域中研究了燃烧模型。在初始速度梯度较小的条件下,得到了强解的全局存在唯一性。利用边界积分估计的能量法,得到了密度场和速度场的先验边界。最后,建立了三维燃烧系统的爆破判据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global Existence of Strong Solutions and Serrin-Type Blowup Criterion for 3D Combustion Model in Bounded Domains

The combustion model is studied in three-dimensional (3D) smooth bounded domains with various types of boundary conditions. The global existence and uniqueness of strong solutions are obtained under the smallness of the gradient of initial velocity in some precise sense. Using the energy method with the estimates of boundary integrals, we obtain the a priori bounds of the density and velocity field. Finally, we establish the blowup criterion for the 3D combustion system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
15.40%
发文量
97
审稿时长
>12 weeks
期刊介绍: The Journal of Mathematical Fluid Mechanics (JMFM)is a forum for the publication of high-quality peer-reviewed papers on the mathematical theory of fluid mechanics, with special regards to the Navier-Stokes equations. As an important part of that, the journal encourages papers dealing with mathematical aspects of computational theory, as well as with applications in science and engineering. The journal also publishes in related areas of mathematics that have a direct bearing on the mathematical theory of fluid mechanics. All papers will be characterized by originality and mathematical rigor. For a paper to be accepted, it is not enough that it contains original results. In fact, results should be highly relevant to the mathematical theory of fluid mechanics, and meet a wide readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信