随机Burgers方程的Kolmogorov 4/5定律的弱和强版本

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Peng Gao, Sergei Kuksin
{"title":"随机Burgers方程的Kolmogorov 4/5定律的弱和强版本","authors":"Peng Gao,&nbsp;Sergei Kuksin","doi":"10.1007/s00205-023-01940-2","DOIUrl":null,"url":null,"abstract":"<div><p>For solutions of the space-periodic stochastic 1d Burgers equation we establish two versions of the Kolmogorov 4/5-law; this provides an asymptotic expansion for the third moment of increments of turbulent velocity fields. We also prove for this equation an analogy of the Landau objection to possible universality of Kolmogorov’s theory of turbulence, and show that the third moment is the only one which admits a universal asymptotic expansion.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Weak and Strong Versions of the Kolmogorov 4/5-Law for Stochastic Burgers Equation\",\"authors\":\"Peng Gao,&nbsp;Sergei Kuksin\",\"doi\":\"10.1007/s00205-023-01940-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For solutions of the space-periodic stochastic 1d Burgers equation we establish two versions of the Kolmogorov 4/5-law; this provides an asymptotic expansion for the third moment of increments of turbulent velocity fields. We also prove for this equation an analogy of the Landau objection to possible universality of Kolmogorov’s theory of turbulence, and show that the third moment is the only one which admits a universal asymptotic expansion.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00205-023-01940-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-023-01940-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1

摘要

对于空间周期随机1d Burgers方程的解,我们建立了两种版本的Kolmogorov 4/5定律;这提供了湍流速度场增量的第三矩的渐近展开式。我们还证明了这个方程的一个类似于关于柯尔莫哥罗夫湍流理论可能普适的朗道反对,并证明了第三矩是唯一允许普适渐近展开的矩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weak and Strong Versions of the Kolmogorov 4/5-Law for Stochastic Burgers Equation

For solutions of the space-periodic stochastic 1d Burgers equation we establish two versions of the Kolmogorov 4/5-law; this provides an asymptotic expansion for the third moment of increments of turbulent velocity fields. We also prove for this equation an analogy of the Landau objection to possible universality of Kolmogorov’s theory of turbulence, and show that the third moment is the only one which admits a universal asymptotic expansion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信