模型颗粒流中的流体效应

IF 2.3 3区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yuting Zhao, W. Andy Take, Roland Kaitna, Brian W. McArdell, Jim N. McElwaine, Elisabeth T. Bowman
{"title":"模型颗粒流中的流体效应","authors":"Yuting Zhao,&nbsp;W. Andy Take,&nbsp;Roland Kaitna,&nbsp;Brian W. McArdell,&nbsp;Jim N. McElwaine,&nbsp;Elisabeth T. Bowman","doi":"10.1007/s10035-023-01365-4","DOIUrl":null,"url":null,"abstract":"<div><p>Pore fluid plays a crucial role in many granular flows, especially those in geophysical settings. However, the transition in behaviour between dry flows and fully saturated flows and the underlying physics that relate to this are poorly understood. In this paper, we report the results of small-scale flume experiments using monodisperse granular particles with varying water content and volume in which the basal pore pressure, total pressure, flow height and velocity profile were measured at a section. We compare the results with theoretical profiles for granular flow and with flow regimes based on dimensional analysis. The runout and the centre of mass were also calculated from the deposit surface profiles. As the initial water content by mass was increased from zero to around 10%, we first observed a drop in mobility by approximately 50%, as surface tension caused cohesive behaviour due to matric suction. As the water content was further increased up to 45%, the mobility also increased dramatically, with increased flow velocity up to 50%, increased runout distance up to 240% and reduced travel angle by up to 10° compared to the dry case. These effects can be directly related to the basal pore pressure, with both negative pressures and positive pore pressures being measured relative to atmospheric during the unsteady flow. We find that the initial flow volume plays a role in the development of relative pore pressure, such that, at a fixed relative water content, larger flows exhibit greater positive pore pressures, greater velocities and greater relative runout distances. This aligns with many other granular experiments and field observations. Our findings suggest that the fundamental role of the pore fluid is to reduce frictional contact forces between grains thus increasing flow velocity and bulk mobility. While this can occur by the development of excess pore pressure, it can also occur where the positive pore pressure is not in excess of hydrostatic, as shown here, since buoyancy and lubrication alone will reduce frictional forces.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":582,"journal":{"name":"Granular Matter","volume":"26 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10035-023-01365-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Fluid effects in model granular flows\",\"authors\":\"Yuting Zhao,&nbsp;W. Andy Take,&nbsp;Roland Kaitna,&nbsp;Brian W. McArdell,&nbsp;Jim N. McElwaine,&nbsp;Elisabeth T. Bowman\",\"doi\":\"10.1007/s10035-023-01365-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Pore fluid plays a crucial role in many granular flows, especially those in geophysical settings. However, the transition in behaviour between dry flows and fully saturated flows and the underlying physics that relate to this are poorly understood. In this paper, we report the results of small-scale flume experiments using monodisperse granular particles with varying water content and volume in which the basal pore pressure, total pressure, flow height and velocity profile were measured at a section. We compare the results with theoretical profiles for granular flow and with flow regimes based on dimensional analysis. The runout and the centre of mass were also calculated from the deposit surface profiles. As the initial water content by mass was increased from zero to around 10%, we first observed a drop in mobility by approximately 50%, as surface tension caused cohesive behaviour due to matric suction. As the water content was further increased up to 45%, the mobility also increased dramatically, with increased flow velocity up to 50%, increased runout distance up to 240% and reduced travel angle by up to 10° compared to the dry case. These effects can be directly related to the basal pore pressure, with both negative pressures and positive pore pressures being measured relative to atmospheric during the unsteady flow. We find that the initial flow volume plays a role in the development of relative pore pressure, such that, at a fixed relative water content, larger flows exhibit greater positive pore pressures, greater velocities and greater relative runout distances. This aligns with many other granular experiments and field observations. Our findings suggest that the fundamental role of the pore fluid is to reduce frictional contact forces between grains thus increasing flow velocity and bulk mobility. While this can occur by the development of excess pore pressure, it can also occur where the positive pore pressure is not in excess of hydrostatic, as shown here, since buoyancy and lubrication alone will reduce frictional forces.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":582,\"journal\":{\"name\":\"Granular Matter\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10035-023-01365-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Granular Matter\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10035-023-01365-4\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Granular Matter","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10035-023-01365-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

孔隙流体在许多颗粒流动中起着至关重要的作用,特别是在地球物理环境中。然而,干流和完全饱和流之间的行为转变以及与此相关的潜在物理原理却知之甚少。在本文中,我们报告了用不同含水量和体积的单分散颗粒颗粒进行小尺度水槽试验的结果,在一个断面上测量了基本孔隙压力、总压力、流高和速度剖面。我们将结果与颗粒流动的理论剖面和基于量纲分析的流动形式进行比较。根据矿床表面剖面计算出跳动和质心。当初始质量含水量从零增加到10%左右时,我们首先观察到流动性下降了大约50%,这是由于表面张力引起的基质吸力的内聚行为。随着水含量进一步增加到45%,流动性也显著增加,与干燥情况相比,流速增加了50%,跳动距离增加了240%,行进角减少了10°。这些影响与基孔压力直接相关,在非定常流动过程中测量了相对于大气的正、负孔压力。我们发现初始流量对相对孔隙压力的发展起着重要作用,在一定的相对含水量下,较大的流量表现出更大的正孔隙压力、更大的流速和更大的相对跳动距离。这与许多其他颗粒实验和实地观察相一致。我们的研究结果表明,孔隙流体的基本作用是减少颗粒之间的摩擦接触力,从而提高流动速度和体积流动性。虽然这可能发生在超孔隙压力的发展,但它也可能发生在正孔隙压力不超过静水压力的地方,如图所示,因为浮力和润滑本身会减少摩擦力。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fluid effects in model granular flows

Fluid effects in model granular flows

Pore fluid plays a crucial role in many granular flows, especially those in geophysical settings. However, the transition in behaviour between dry flows and fully saturated flows and the underlying physics that relate to this are poorly understood. In this paper, we report the results of small-scale flume experiments using monodisperse granular particles with varying water content and volume in which the basal pore pressure, total pressure, flow height and velocity profile were measured at a section. We compare the results with theoretical profiles for granular flow and with flow regimes based on dimensional analysis. The runout and the centre of mass were also calculated from the deposit surface profiles. As the initial water content by mass was increased from zero to around 10%, we first observed a drop in mobility by approximately 50%, as surface tension caused cohesive behaviour due to matric suction. As the water content was further increased up to 45%, the mobility also increased dramatically, with increased flow velocity up to 50%, increased runout distance up to 240% and reduced travel angle by up to 10° compared to the dry case. These effects can be directly related to the basal pore pressure, with both negative pressures and positive pore pressures being measured relative to atmospheric during the unsteady flow. We find that the initial flow volume plays a role in the development of relative pore pressure, such that, at a fixed relative water content, larger flows exhibit greater positive pore pressures, greater velocities and greater relative runout distances. This aligns with many other granular experiments and field observations. Our findings suggest that the fundamental role of the pore fluid is to reduce frictional contact forces between grains thus increasing flow velocity and bulk mobility. While this can occur by the development of excess pore pressure, it can also occur where the positive pore pressure is not in excess of hydrostatic, as shown here, since buoyancy and lubrication alone will reduce frictional forces.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Granular Matter
Granular Matter Materials Science-General Materials Science
CiteScore
4.60
自引率
8.30%
发文量
95
审稿时长
6 months
期刊介绍: Although many phenomena observed in granular materials are still not yet fully understood, important contributions have been made to further our understanding using modern tools from statistical mechanics, micro-mechanics, and computational science. These modern tools apply to disordered systems, phase transitions, instabilities or intermittent behavior and the performance of discrete particle simulations. >> Until now, however, many of these results were only to be found scattered throughout the literature. Physicists are often unaware of the theories and results published by engineers or other fields - and vice versa. The journal Granular Matter thus serves as an interdisciplinary platform of communication among researchers of various disciplines who are involved in the basic research on granular media. It helps to establish a common language and gather articles under one single roof that up to now have been spread over many journals in a variety of fields. Notwithstanding, highly applied or technical work is beyond the scope of this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信