{"title":"利用过渡金属二硫化物和ZnO纳米颗粒之间的异质结提高NO2传感器的回收率","authors":"Leilei Wang, Jungwook Choi","doi":"10.1186/s40486-023-00171-0","DOIUrl":null,"url":null,"abstract":"<div><p>The stable recovery of gas sensors is an important indicator for evaluating their performance. Hitherto, the use of external light sources and/or an increase in the operating temperature has been effective in improving the recovery rate of gas sensors. Herein, heterojunctions were formed between the two-dimensional transition metal dichalcogenide nanosheets and zero-dimensional ZnO nanoparticles to improve the recovery rate of a NO<sub>2</sub> sensor. Scanning electron microscopy and Raman spectroscopy suggested a successful deposition of ZnO nanoparticles onto the MoS<sub>2</sub> and WSe<sub>2</sub> nanosheets. The sensing response to 10 ppm NO<sub>2</sub> gas at 100 °C indicated that the heterojunction formed by ZnO and MoS<sub>2</sub> or WSe<sub>2</sub> successfully improved the recovery rate of the sensor by 11.87% and 19.44%, respectively, whereas the sensitivity remained constant. The proposed approach contributes to improving the performance of gas sensors.</p></div>","PeriodicalId":704,"journal":{"name":"Micro and Nano Systems Letters","volume":"11 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://mnsl-journal.springeropen.com/counter/pdf/10.1186/s40486-023-00171-0","citationCount":"0","resultStr":"{\"title\":\"Improved recovery of NO2 sensors using heterojunctions between transition metal dichalcogenides and ZnO nanoparticles\",\"authors\":\"Leilei Wang, Jungwook Choi\",\"doi\":\"10.1186/s40486-023-00171-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The stable recovery of gas sensors is an important indicator for evaluating their performance. Hitherto, the use of external light sources and/or an increase in the operating temperature has been effective in improving the recovery rate of gas sensors. Herein, heterojunctions were formed between the two-dimensional transition metal dichalcogenide nanosheets and zero-dimensional ZnO nanoparticles to improve the recovery rate of a NO<sub>2</sub> sensor. Scanning electron microscopy and Raman spectroscopy suggested a successful deposition of ZnO nanoparticles onto the MoS<sub>2</sub> and WSe<sub>2</sub> nanosheets. The sensing response to 10 ppm NO<sub>2</sub> gas at 100 °C indicated that the heterojunction formed by ZnO and MoS<sub>2</sub> or WSe<sub>2</sub> successfully improved the recovery rate of the sensor by 11.87% and 19.44%, respectively, whereas the sensitivity remained constant. The proposed approach contributes to improving the performance of gas sensors.</p></div>\",\"PeriodicalId\":704,\"journal\":{\"name\":\"Micro and Nano Systems Letters\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://mnsl-journal.springeropen.com/counter/pdf/10.1186/s40486-023-00171-0\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nano Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40486-023-00171-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nano Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40486-023-00171-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Improved recovery of NO2 sensors using heterojunctions between transition metal dichalcogenides and ZnO nanoparticles
The stable recovery of gas sensors is an important indicator for evaluating their performance. Hitherto, the use of external light sources and/or an increase in the operating temperature has been effective in improving the recovery rate of gas sensors. Herein, heterojunctions were formed between the two-dimensional transition metal dichalcogenide nanosheets and zero-dimensional ZnO nanoparticles to improve the recovery rate of a NO2 sensor. Scanning electron microscopy and Raman spectroscopy suggested a successful deposition of ZnO nanoparticles onto the MoS2 and WSe2 nanosheets. The sensing response to 10 ppm NO2 gas at 100 °C indicated that the heterojunction formed by ZnO and MoS2 or WSe2 successfully improved the recovery rate of the sensor by 11.87% and 19.44%, respectively, whereas the sensitivity remained constant. The proposed approach contributes to improving the performance of gas sensors.