{"title":"双曲可压缩Navier-Stokes方程稀疏波的渐近稳定性","authors":"Yuxi Hu, Xuefang Wang","doi":"10.1007/s00021-023-00833-4","DOIUrl":null,"url":null,"abstract":"<div><p>We consider a model of one dimensional isentropic compressible Navier–Stokes equations for which the classical Newtonian flow is replaced by a Maxwell flow. We establish the asymptotic stability of rarefaction waves for this model under some small conditions on initial perturbations and amplitude of the waves. The proof is based on <span>\\(L^2\\)</span> energy methods.\n</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"25 4","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic Stability of Rarefaction Waves for Hyperbolized Compressible Navier–Stokes Equations\",\"authors\":\"Yuxi Hu, Xuefang Wang\",\"doi\":\"10.1007/s00021-023-00833-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider a model of one dimensional isentropic compressible Navier–Stokes equations for which the classical Newtonian flow is replaced by a Maxwell flow. We establish the asymptotic stability of rarefaction waves for this model under some small conditions on initial perturbations and amplitude of the waves. The proof is based on <span>\\\\(L^2\\\\)</span> energy methods.\\n</p></div>\",\"PeriodicalId\":649,\"journal\":{\"name\":\"Journal of Mathematical Fluid Mechanics\",\"volume\":\"25 4\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Fluid Mechanics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00021-023-00833-4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Fluid Mechanics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-023-00833-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Asymptotic Stability of Rarefaction Waves for Hyperbolized Compressible Navier–Stokes Equations
We consider a model of one dimensional isentropic compressible Navier–Stokes equations for which the classical Newtonian flow is replaced by a Maxwell flow. We establish the asymptotic stability of rarefaction waves for this model under some small conditions on initial perturbations and amplitude of the waves. The proof is based on \(L^2\) energy methods.
期刊介绍:
The Journal of Mathematical Fluid Mechanics (JMFM)is a forum for the publication of high-quality peer-reviewed papers on the mathematical theory of fluid mechanics, with special regards to the Navier-Stokes equations. As an important part of that, the journal encourages papers dealing with mathematical aspects of computational theory, as well as with applications in science and engineering. The journal also publishes in related areas of mathematics that have a direct bearing on the mathematical theory of fluid mechanics. All papers will be characterized by originality and mathematical rigor. For a paper to be accepted, it is not enough that it contains original results. In fact, results should be highly relevant to the mathematical theory of fluid mechanics, and meet a wide readership.