双曲可压缩Navier-Stokes方程稀疏波的渐近稳定性

IF 1.2 3区 数学 Q2 MATHEMATICS, APPLIED
Yuxi Hu, Xuefang Wang
{"title":"双曲可压缩Navier-Stokes方程稀疏波的渐近稳定性","authors":"Yuxi Hu,&nbsp;Xuefang Wang","doi":"10.1007/s00021-023-00833-4","DOIUrl":null,"url":null,"abstract":"<div><p>We consider a model of one dimensional isentropic compressible Navier–Stokes equations for which the classical Newtonian flow is replaced by a Maxwell flow. We establish the asymptotic stability of rarefaction waves for this model under some small conditions on initial perturbations and amplitude of the waves. The proof is based on <span>\\(L^2\\)</span> energy methods.\n</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"25 4","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic Stability of Rarefaction Waves for Hyperbolized Compressible Navier–Stokes Equations\",\"authors\":\"Yuxi Hu,&nbsp;Xuefang Wang\",\"doi\":\"10.1007/s00021-023-00833-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider a model of one dimensional isentropic compressible Navier–Stokes equations for which the classical Newtonian flow is replaced by a Maxwell flow. We establish the asymptotic stability of rarefaction waves for this model under some small conditions on initial perturbations and amplitude of the waves. The proof is based on <span>\\\\(L^2\\\\)</span> energy methods.\\n</p></div>\",\"PeriodicalId\":649,\"journal\":{\"name\":\"Journal of Mathematical Fluid Mechanics\",\"volume\":\"25 4\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Fluid Mechanics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00021-023-00833-4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Fluid Mechanics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-023-00833-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑一个一维等熵可压缩纳维-斯托克斯方程模型,其中经典牛顿流被麦克斯韦流所取代。在初始扰动和波幅的条件下,建立了该模型稀疏波的渐近稳定性。该证明基于\(L^2\)能量方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic Stability of Rarefaction Waves for Hyperbolized Compressible Navier–Stokes Equations

We consider a model of one dimensional isentropic compressible Navier–Stokes equations for which the classical Newtonian flow is replaced by a Maxwell flow. We establish the asymptotic stability of rarefaction waves for this model under some small conditions on initial perturbations and amplitude of the waves. The proof is based on \(L^2\) energy methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
15.40%
发文量
97
审稿时长
>12 weeks
期刊介绍: The Journal of Mathematical Fluid Mechanics (JMFM)is a forum for the publication of high-quality peer-reviewed papers on the mathematical theory of fluid mechanics, with special regards to the Navier-Stokes equations. As an important part of that, the journal encourages papers dealing with mathematical aspects of computational theory, as well as with applications in science and engineering. The journal also publishes in related areas of mathematics that have a direct bearing on the mathematical theory of fluid mechanics. All papers will be characterized by originality and mathematical rigor. For a paper to be accepted, it is not enough that it contains original results. In fact, results should be highly relevant to the mathematical theory of fluid mechanics, and meet a wide readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信