{"title":"应用机器学习算法预测晚期鼻咽癌调强放疗后的预后","authors":"Dan Hu , Ying Wang , Genxin Ji , Yu Liu","doi":"10.1016/j.currproblcancer.2023.101040","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p><span>The prognosis of advanced nasopharyngeal carcinoma (NPC) patients after intensity-modulated radiotherapy (IMRT) has not been well studied. We aimed to construct prognostic models for advanced NPC patients with stage III-IV after their first </span>treatment with IMRT by using machine learning algorithms and to identify the most important predictors.</p></div><div><h3>Methods</h3><p>A total of 427 patients treated in MeiZhou City People's Hospital in Guangzhou province, China from January 1, 2013 to December 12, 2018 were enrolled in this study, with an average follow-up period of 7.16 years from July 2020 to March 2021. Candidate predictors were selected from demographics, clinical features, medical examinations and test results. Three machine learning algorithms were applied to construct advanced NPC prognostic models: logistic regression (LR), decision tree (DT), and random forest (RF). Area under the receiver operating characteristic curve (AUC) was used to evaluate the model performance. The important predictors of the optimal model for unfavourable prognosis were identified and ranked.</p></div><div><h3>Results</h3><p>There were 50 (11.7%) NPC-related deaths observed in this study. The mean age of all participants was 49.39±11.29 years, of whom 299 (70.0%) were males. In general, RF showed the best predictive performance with the highest AUC (0.753, 95% CI: 0.609, 0.896), compared to LR (0.736, 95% confidence interval (CI): 0.590, 0.881), and DT (0.720, 95% CI: 0.520, 0.921). The six most important predictors identified by RF were Epstein-Barr virus deoxyribonucleic acid, aspartate aminotransferase, body mass index<span><span>, age, blood glucose level, and </span>alanine aminotransferase.</span></p></div><div><h3>Conclusions</h3><p>We proposed RF as a simple and accurate tool for the evaluation of the prognosis of advanced NPC patients after the treatment with IMRT in clinical settings.</p></div>","PeriodicalId":55193,"journal":{"name":"Current Problems in Cancer","volume":"48 ","pages":"Article 101040"},"PeriodicalIF":2.5000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using machine learning algorithms to predict the prognosis of advanced nasopharyngeal carcinoma after intensity-modulated radiotherapy\",\"authors\":\"Dan Hu , Ying Wang , Genxin Ji , Yu Liu\",\"doi\":\"10.1016/j.currproblcancer.2023.101040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p><span>The prognosis of advanced nasopharyngeal carcinoma (NPC) patients after intensity-modulated radiotherapy (IMRT) has not been well studied. We aimed to construct prognostic models for advanced NPC patients with stage III-IV after their first </span>treatment with IMRT by using machine learning algorithms and to identify the most important predictors.</p></div><div><h3>Methods</h3><p>A total of 427 patients treated in MeiZhou City People's Hospital in Guangzhou province, China from January 1, 2013 to December 12, 2018 were enrolled in this study, with an average follow-up period of 7.16 years from July 2020 to March 2021. Candidate predictors were selected from demographics, clinical features, medical examinations and test results. Three machine learning algorithms were applied to construct advanced NPC prognostic models: logistic regression (LR), decision tree (DT), and random forest (RF). Area under the receiver operating characteristic curve (AUC) was used to evaluate the model performance. The important predictors of the optimal model for unfavourable prognosis were identified and ranked.</p></div><div><h3>Results</h3><p>There were 50 (11.7%) NPC-related deaths observed in this study. The mean age of all participants was 49.39±11.29 years, of whom 299 (70.0%) were males. In general, RF showed the best predictive performance with the highest AUC (0.753, 95% CI: 0.609, 0.896), compared to LR (0.736, 95% confidence interval (CI): 0.590, 0.881), and DT (0.720, 95% CI: 0.520, 0.921). The six most important predictors identified by RF were Epstein-Barr virus deoxyribonucleic acid, aspartate aminotransferase, body mass index<span><span>, age, blood glucose level, and </span>alanine aminotransferase.</span></p></div><div><h3>Conclusions</h3><p>We proposed RF as a simple and accurate tool for the evaluation of the prognosis of advanced NPC patients after the treatment with IMRT in clinical settings.</p></div>\",\"PeriodicalId\":55193,\"journal\":{\"name\":\"Current Problems in Cancer\",\"volume\":\"48 \",\"pages\":\"Article 101040\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Problems in Cancer\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0147027223000934\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Problems in Cancer","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0147027223000934","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
Using machine learning algorithms to predict the prognosis of advanced nasopharyngeal carcinoma after intensity-modulated radiotherapy
Background
The prognosis of advanced nasopharyngeal carcinoma (NPC) patients after intensity-modulated radiotherapy (IMRT) has not been well studied. We aimed to construct prognostic models for advanced NPC patients with stage III-IV after their first treatment with IMRT by using machine learning algorithms and to identify the most important predictors.
Methods
A total of 427 patients treated in MeiZhou City People's Hospital in Guangzhou province, China from January 1, 2013 to December 12, 2018 were enrolled in this study, with an average follow-up period of 7.16 years from July 2020 to March 2021. Candidate predictors were selected from demographics, clinical features, medical examinations and test results. Three machine learning algorithms were applied to construct advanced NPC prognostic models: logistic regression (LR), decision tree (DT), and random forest (RF). Area under the receiver operating characteristic curve (AUC) was used to evaluate the model performance. The important predictors of the optimal model for unfavourable prognosis were identified and ranked.
Results
There were 50 (11.7%) NPC-related deaths observed in this study. The mean age of all participants was 49.39±11.29 years, of whom 299 (70.0%) were males. In general, RF showed the best predictive performance with the highest AUC (0.753, 95% CI: 0.609, 0.896), compared to LR (0.736, 95% confidence interval (CI): 0.590, 0.881), and DT (0.720, 95% CI: 0.520, 0.921). The six most important predictors identified by RF were Epstein-Barr virus deoxyribonucleic acid, aspartate aminotransferase, body mass index, age, blood glucose level, and alanine aminotransferase.
Conclusions
We proposed RF as a simple and accurate tool for the evaluation of the prognosis of advanced NPC patients after the treatment with IMRT in clinical settings.
期刊介绍:
Current Problems in Cancer seeks to promote and disseminate innovative, transformative, and impactful data on patient-oriented cancer research and clinical care. Specifically, the journal''s scope is focused on reporting the results of well-designed cancer studies that influence/alter practice or identify new directions in clinical cancer research. These studies can include novel therapeutic approaches, new strategies for early diagnosis, cancer clinical trials, and supportive care, among others. Papers that focus solely on laboratory-based or basic science research are discouraged. The journal''s format also allows, on occasion, for a multi-faceted overview of a single topic via a curated selection of review articles, while also offering articles that present dynamic material that influences the oncology field.