混凝土砌块支护采空区巷道底鼓机理及控制方法

IF 8.2 1区 工程技术 Q1 ENGINEERING, CIVIL
Jiong Wang , Peng Liu , Manchao He , Guangyuan Yu , Huanzhi Tian
{"title":"混凝土砌块支护采空区巷道底鼓机理及控制方法","authors":"Jiong Wang ,&nbsp;Peng Liu ,&nbsp;Manchao He ,&nbsp;Guangyuan Yu ,&nbsp;Huanzhi Tian","doi":"10.1016/j.undsp.2023.09.002","DOIUrl":null,"url":null,"abstract":"<div><p>The issue of significant floor heave deformation in gob-side entry retaining has long been a challenging problem in the context of longwall mining. This paper studies the floor heave failure mechanism and control method for gob-side entry retaining with concrete blocks in Guizhou Faer Coal Mine in China. Based on Rankine’s earth pressure theory, the effective shear stress equation for the plastic slip of roadway floor is established. The deformation mechanism of floor heave in a retaining roadway with a block wall is revealed in this study. The new comprehensive control method is proposed, encompassing roof pre-splitting blasting for pressure relief, reinforcing cables for roof control, double directions control bolts for concrete block, and pliability cushion yielding pressure. FLAC<sup>3D</sup> numerical calculation model is established, which shows that the new method can effectively reduce the average vertical stress peak value of the entity coal floor by 34.6% and significantly reduce the pressure source causing the roadway floor heave. Besides, a multi-parameter real-time online monitoring system for mine pressure was designed, and field tests were carried out. The results show that the maximum value of roadway floor heave under the new method is 163 mm, reduced by 66.9%, and the roadway floor heave is effectively controlled. These research findings offer a fresh perspective and new ideas for controlling floor heave in mining operations.</p></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"15 ","pages":"Pages 244-259"},"PeriodicalIF":8.2000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2467967423001472/pdfft?md5=b4cfa676bc9e38b31ee56c0bdff38c4a&pid=1-s2.0-S2467967423001472-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Floor heave mechanism for gob-side entry retaining with concrete blocks and control method: A case study\",\"authors\":\"Jiong Wang ,&nbsp;Peng Liu ,&nbsp;Manchao He ,&nbsp;Guangyuan Yu ,&nbsp;Huanzhi Tian\",\"doi\":\"10.1016/j.undsp.2023.09.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The issue of significant floor heave deformation in gob-side entry retaining has long been a challenging problem in the context of longwall mining. This paper studies the floor heave failure mechanism and control method for gob-side entry retaining with concrete blocks in Guizhou Faer Coal Mine in China. Based on Rankine’s earth pressure theory, the effective shear stress equation for the plastic slip of roadway floor is established. The deformation mechanism of floor heave in a retaining roadway with a block wall is revealed in this study. The new comprehensive control method is proposed, encompassing roof pre-splitting blasting for pressure relief, reinforcing cables for roof control, double directions control bolts for concrete block, and pliability cushion yielding pressure. FLAC<sup>3D</sup> numerical calculation model is established, which shows that the new method can effectively reduce the average vertical stress peak value of the entity coal floor by 34.6% and significantly reduce the pressure source causing the roadway floor heave. Besides, a multi-parameter real-time online monitoring system for mine pressure was designed, and field tests were carried out. The results show that the maximum value of roadway floor heave under the new method is 163 mm, reduced by 66.9%, and the roadway floor heave is effectively controlled. These research findings offer a fresh perspective and new ideas for controlling floor heave in mining operations.</p></div>\",\"PeriodicalId\":48505,\"journal\":{\"name\":\"Underground Space\",\"volume\":\"15 \",\"pages\":\"Pages 244-259\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2467967423001472/pdfft?md5=b4cfa676bc9e38b31ee56c0bdff38c4a&pid=1-s2.0-S2467967423001472-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Underground Space\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2467967423001472\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Underground Space","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2467967423001472","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

长期以来,在长壁开采的背景下,采空区边巷支护的底鼓变形问题一直是一个具有挑战性的问题。本文对贵州发尔煤矿采空区边巷混凝土砌块支护底鼓破坏机理及控制方法进行了研究。基于朗肯土压力理论,建立了巷道底板塑性滑移的有效剪应力方程。揭示了挡土墙巷道底鼓的变形机理。提出了顶板预裂爆破卸压、顶板控制加筋索、混凝土块体双向控制螺栓、柔韧性缓冲屈服压力的综合控制方法。建立FLAC3D数值计算模型,结果表明,新方法可有效降低实体底板平均垂直应力峰值34.6%,显著降低巷道底鼓产生的压力源。设计了矿井压力多参数实时在线监测系统,并进行了现场试验。结果表明:新方法巷道底鼓最大值为163 mm,减小66.9%,巷道底鼓得到有效控制。这些研究成果为矿山底鼓控制提供了新的视角和思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Floor heave mechanism for gob-side entry retaining with concrete blocks and control method: A case study

The issue of significant floor heave deformation in gob-side entry retaining has long been a challenging problem in the context of longwall mining. This paper studies the floor heave failure mechanism and control method for gob-side entry retaining with concrete blocks in Guizhou Faer Coal Mine in China. Based on Rankine’s earth pressure theory, the effective shear stress equation for the plastic slip of roadway floor is established. The deformation mechanism of floor heave in a retaining roadway with a block wall is revealed in this study. The new comprehensive control method is proposed, encompassing roof pre-splitting blasting for pressure relief, reinforcing cables for roof control, double directions control bolts for concrete block, and pliability cushion yielding pressure. FLAC3D numerical calculation model is established, which shows that the new method can effectively reduce the average vertical stress peak value of the entity coal floor by 34.6% and significantly reduce the pressure source causing the roadway floor heave. Besides, a multi-parameter real-time online monitoring system for mine pressure was designed, and field tests were carried out. The results show that the maximum value of roadway floor heave under the new method is 163 mm, reduced by 66.9%, and the roadway floor heave is effectively controlled. These research findings offer a fresh perspective and new ideas for controlling floor heave in mining operations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Underground Space
Underground Space ENGINEERING, CIVIL-
CiteScore
10.20
自引率
14.10%
发文量
71
审稿时长
63 days
期刊介绍: Underground Space is an open access international journal without article processing charges (APC) committed to serving as a scientific forum for researchers and practitioners in the field of underground engineering. The journal welcomes manuscripts that deal with original theories, methods, technologies, and important applications throughout the life-cycle of underground projects, including planning, design, operation and maintenance, disaster prevention, and demolition. The journal is particularly interested in manuscripts related to the latest development of smart underground engineering from the perspectives of resilience, resources saving, environmental friendliness, humanity, and artificial intelligence. The manuscripts are expected to have significant innovation and potential impact in the field of underground engineering, and should have clear association with or application in underground projects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信