Haoqiang Huang , Zihe Wang , Zhide Wei , Jie Zhang
{"title":"操纵概率序列规则的有限激励","authors":"Haoqiang Huang , Zihe Wang , Zhide Wei , Jie Zhang","doi":"10.1016/j.jcss.2023.103491","DOIUrl":null,"url":null,"abstract":"<div><p>The Probabilistic Serial mechanism is valued for its fairness and efficiency in addressing the random assignment problem. However, it lacks truthfulness, meaning it works well only when agents' stated preferences match their true ones. Significant utility gains from strategic actions may lead self-interested agents to manipulate the mechanism, undermining its practical adoption. To gauge the potential for manipulation, we explore an extreme scenario where a manipulator has complete knowledge of other agents' reports and unlimited computational resources to find their best strategy. We establish tight incentive ratio bounds of the mechanism. Furthermore, we complement these worst-case guarantees by conducting experiments to assess an agent's average utility gain through manipulation. The findings reveal that the incentive for manipulation is very small. These results offer insights into the mechanism's resilience against strategic manipulation, moving beyond the recognition of its lack of incentive compatibility.</p></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"140 ","pages":"Article 103491"},"PeriodicalIF":1.1000,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bounded incentives in manipulating the probabilistic serial rule\",\"authors\":\"Haoqiang Huang , Zihe Wang , Zhide Wei , Jie Zhang\",\"doi\":\"10.1016/j.jcss.2023.103491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Probabilistic Serial mechanism is valued for its fairness and efficiency in addressing the random assignment problem. However, it lacks truthfulness, meaning it works well only when agents' stated preferences match their true ones. Significant utility gains from strategic actions may lead self-interested agents to manipulate the mechanism, undermining its practical adoption. To gauge the potential for manipulation, we explore an extreme scenario where a manipulator has complete knowledge of other agents' reports and unlimited computational resources to find their best strategy. We establish tight incentive ratio bounds of the mechanism. Furthermore, we complement these worst-case guarantees by conducting experiments to assess an agent's average utility gain through manipulation. The findings reveal that the incentive for manipulation is very small. These results offer insights into the mechanism's resilience against strategic manipulation, moving beyond the recognition of its lack of incentive compatibility.</p></div>\",\"PeriodicalId\":50224,\"journal\":{\"name\":\"Journal of Computer and System Sciences\",\"volume\":\"140 \",\"pages\":\"Article 103491\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer and System Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002200002300096X\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer and System Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002200002300096X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
Bounded incentives in manipulating the probabilistic serial rule
The Probabilistic Serial mechanism is valued for its fairness and efficiency in addressing the random assignment problem. However, it lacks truthfulness, meaning it works well only when agents' stated preferences match their true ones. Significant utility gains from strategic actions may lead self-interested agents to manipulate the mechanism, undermining its practical adoption. To gauge the potential for manipulation, we explore an extreme scenario where a manipulator has complete knowledge of other agents' reports and unlimited computational resources to find their best strategy. We establish tight incentive ratio bounds of the mechanism. Furthermore, we complement these worst-case guarantees by conducting experiments to assess an agent's average utility gain through manipulation. The findings reveal that the incentive for manipulation is very small. These results offer insights into the mechanism's resilience against strategic manipulation, moving beyond the recognition of its lack of incentive compatibility.
期刊介绍:
The Journal of Computer and System Sciences publishes original research papers in computer science and related subjects in system science, with attention to the relevant mathematical theory. Applications-oriented papers may also be accepted and they are expected to contain deep analytic evaluation of the proposed solutions.
Research areas include traditional subjects such as:
• Theory of algorithms and computability
• Formal languages
• Automata theory
Contemporary subjects such as:
• Complexity theory
• Algorithmic Complexity
• Parallel & distributed computing
• Computer networks
• Neural networks
• Computational learning theory
• Database theory & practice
• Computer modeling of complex systems
• Security and Privacy.