{"title":"流-网络域空间复杂数据分析的面向对象方法","authors":"Chiara Barbi, Alessandra Menafoglio, Piercesare Secchi","doi":"10.1016/j.spasta.2023.100784","DOIUrl":null,"url":null,"abstract":"<div><p>We address the problem of spatial prediction for Hilbert data, when their spatial domain of observation is a river network. The reticular nature of the domain requires to use geostatistical methods based on the concept of Stream Distance, which captures the spatial connectivity of the points in the river induced by the network branching. Within the framework of Object Oriented Spatial Statistics (O2S2), where the data are considered as points of an appropriate (functional) embedding space, we develop a class of functional moving average models based on the Stream Distance. Both the geometry of the data and that of the spatial domain are thus taken into account. A consistent definition of covariance structure is developed, and associated estimators are studied. Through the analysis of the summer water temperature profiles in the Middle Fork River (Idaho, USA), our methodology proved to be effective, both in terms of covariance structure characterization and forecasting performance.</p></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2211675323000593/pdfft?md5=4979280ca2f27266baac893a5684a955&pid=1-s2.0-S2211675323000593-main.pdf","citationCount":"0","resultStr":"{\"title\":\"An object-oriented approach to the analysis of spatial complex data over stream-network domains\",\"authors\":\"Chiara Barbi, Alessandra Menafoglio, Piercesare Secchi\",\"doi\":\"10.1016/j.spasta.2023.100784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We address the problem of spatial prediction for Hilbert data, when their spatial domain of observation is a river network. The reticular nature of the domain requires to use geostatistical methods based on the concept of Stream Distance, which captures the spatial connectivity of the points in the river induced by the network branching. Within the framework of Object Oriented Spatial Statistics (O2S2), where the data are considered as points of an appropriate (functional) embedding space, we develop a class of functional moving average models based on the Stream Distance. Both the geometry of the data and that of the spatial domain are thus taken into account. A consistent definition of covariance structure is developed, and associated estimators are studied. Through the analysis of the summer water temperature profiles in the Middle Fork River (Idaho, USA), our methodology proved to be effective, both in terms of covariance structure characterization and forecasting performance.</p></div>\",\"PeriodicalId\":48771,\"journal\":{\"name\":\"Spatial Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2211675323000593/pdfft?md5=4979280ca2f27266baac893a5684a955&pid=1-s2.0-S2211675323000593-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spatial Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211675323000593\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial Statistics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211675323000593","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
An object-oriented approach to the analysis of spatial complex data over stream-network domains
We address the problem of spatial prediction for Hilbert data, when their spatial domain of observation is a river network. The reticular nature of the domain requires to use geostatistical methods based on the concept of Stream Distance, which captures the spatial connectivity of the points in the river induced by the network branching. Within the framework of Object Oriented Spatial Statistics (O2S2), where the data are considered as points of an appropriate (functional) embedding space, we develop a class of functional moving average models based on the Stream Distance. Both the geometry of the data and that of the spatial domain are thus taken into account. A consistent definition of covariance structure is developed, and associated estimators are studied. Through the analysis of the summer water temperature profiles in the Middle Fork River (Idaho, USA), our methodology proved to be effective, both in terms of covariance structure characterization and forecasting performance.
期刊介绍:
Spatial Statistics publishes articles on the theory and application of spatial and spatio-temporal statistics. It favours manuscripts that present theory generated by new applications, or in which new theory is applied to an important practical case. A purely theoretical study will only rarely be accepted. Pure case studies without methodological development are not acceptable for publication.
Spatial statistics concerns the quantitative analysis of spatial and spatio-temporal data, including their statistical dependencies, accuracy and uncertainties. Methodology for spatial statistics is typically found in probability theory, stochastic modelling and mathematical statistics as well as in information science. Spatial statistics is used in mapping, assessing spatial data quality, sampling design optimisation, modelling of dependence structures, and drawing of valid inference from a limited set of spatio-temporal data.