具有超低导热性的Si/Ge超晶格纳米线

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nano Letters Pub Date : 2012-10-29 DOI:10.1021/nl301971k
Ming Hu*, Dimos Poulikakos
{"title":"具有超低导热性的Si/Ge超晶格纳米线","authors":"Ming Hu*,&nbsp;Dimos Poulikakos","doi":"10.1021/nl301971k","DOIUrl":null,"url":null,"abstract":"<p >The engineering of nanostructured materials with very low thermal conductivity is a necessary step toward the realization of efficient thermoelectric devices. We report here the main results of an investigation with nonequilibrium molecular dynamics simulations on thermal transport in Si/Ge superlattice nanowires aiming at taking advantage of the inherent one dimensionality and the combined presence of surface and interfacial phonon scattering to yield ultralow values for their thermal conductivity. Our calculations revealed that the thermal conductivity of a Si/Ge superlattice nanowire varies nonmonotonically with both the Si/Ge lattice periodic length and the nanowire cross-sectional width. The optimal periodic length corresponds to an order of magnitude (92%) decrease in thermal conductivity at room temperature, compared to pristine single-crystalline Si nanowires. We also identified two competing mechanisms governing the thermal transport in superlattice nanowires, responsible for this nonmonotonic behavior: interface modulation in the longitudinal direction significantly depressing the phonon group velocities and hindering heat conduction, and coherent phonons occurring at extremely short periodic lengths counteracting the interface effect and facilitating thermal transport. Our results show trends for superlattice nanowire design for efficient thermoelectrics.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"12 11","pages":"5487–5494"},"PeriodicalIF":9.6000,"publicationDate":"2012-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1021/nl301971k","citationCount":"193","resultStr":"{\"title\":\"Si/Ge Superlattice Nanowires with Ultralow Thermal Conductivity\",\"authors\":\"Ming Hu*,&nbsp;Dimos Poulikakos\",\"doi\":\"10.1021/nl301971k\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The engineering of nanostructured materials with very low thermal conductivity is a necessary step toward the realization of efficient thermoelectric devices. We report here the main results of an investigation with nonequilibrium molecular dynamics simulations on thermal transport in Si/Ge superlattice nanowires aiming at taking advantage of the inherent one dimensionality and the combined presence of surface and interfacial phonon scattering to yield ultralow values for their thermal conductivity. Our calculations revealed that the thermal conductivity of a Si/Ge superlattice nanowire varies nonmonotonically with both the Si/Ge lattice periodic length and the nanowire cross-sectional width. The optimal periodic length corresponds to an order of magnitude (92%) decrease in thermal conductivity at room temperature, compared to pristine single-crystalline Si nanowires. We also identified two competing mechanisms governing the thermal transport in superlattice nanowires, responsible for this nonmonotonic behavior: interface modulation in the longitudinal direction significantly depressing the phonon group velocities and hindering heat conduction, and coherent phonons occurring at extremely short periodic lengths counteracting the interface effect and facilitating thermal transport. Our results show trends for superlattice nanowire design for efficient thermoelectrics.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"12 11\",\"pages\":\"5487–5494\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2012-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1021/nl301971k\",\"citationCount\":\"193\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/nl301971k\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/nl301971k","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 193

摘要

具有极低导热系数的纳米结构材料工程是实现高效热电器件的必要步骤。本文报告了Si/Ge超晶格纳米线中热输运的非平衡分子动力学模拟研究的主要结果,该研究旨在利用Si/Ge超晶格纳米线固有的一维性以及表面和界面声子散射的组合存在来获得其超低导热系数。我们的计算表明,Si/Ge超晶格纳米线的导热系数随Si/Ge晶格周期长度和纳米线横截面宽度的变化而非单调变化。与原始单晶硅纳米线相比,最佳周期长度对应于室温下导热系数降低了一个数量级(92%)。我们还发现了控制超晶格纳米线中热输运的两个相互竞争的机制,负责这种非单调行为:纵向的界面调制显著抑制声子群速度并阻碍热传导,以及在极短的周期长度上出现的相干声子抵消界面效应并促进热输运。我们的结果显示了高效热电超晶格纳米线设计的趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Si/Ge Superlattice Nanowires with Ultralow Thermal Conductivity

Si/Ge Superlattice Nanowires with Ultralow Thermal Conductivity

The engineering of nanostructured materials with very low thermal conductivity is a necessary step toward the realization of efficient thermoelectric devices. We report here the main results of an investigation with nonequilibrium molecular dynamics simulations on thermal transport in Si/Ge superlattice nanowires aiming at taking advantage of the inherent one dimensionality and the combined presence of surface and interfacial phonon scattering to yield ultralow values for their thermal conductivity. Our calculations revealed that the thermal conductivity of a Si/Ge superlattice nanowire varies nonmonotonically with both the Si/Ge lattice periodic length and the nanowire cross-sectional width. The optimal periodic length corresponds to an order of magnitude (92%) decrease in thermal conductivity at room temperature, compared to pristine single-crystalline Si nanowires. We also identified two competing mechanisms governing the thermal transport in superlattice nanowires, responsible for this nonmonotonic behavior: interface modulation in the longitudinal direction significantly depressing the phonon group velocities and hindering heat conduction, and coherent phonons occurring at extremely short periodic lengths counteracting the interface effect and facilitating thermal transport. Our results show trends for superlattice nanowire design for efficient thermoelectrics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信