{"title":"具有超低导热性的Si/Ge超晶格纳米线","authors":"Ming Hu*, Dimos Poulikakos","doi":"10.1021/nl301971k","DOIUrl":null,"url":null,"abstract":"<p >The engineering of nanostructured materials with very low thermal conductivity is a necessary step toward the realization of efficient thermoelectric devices. We report here the main results of an investigation with nonequilibrium molecular dynamics simulations on thermal transport in Si/Ge superlattice nanowires aiming at taking advantage of the inherent one dimensionality and the combined presence of surface and interfacial phonon scattering to yield ultralow values for their thermal conductivity. Our calculations revealed that the thermal conductivity of a Si/Ge superlattice nanowire varies nonmonotonically with both the Si/Ge lattice periodic length and the nanowire cross-sectional width. The optimal periodic length corresponds to an order of magnitude (92%) decrease in thermal conductivity at room temperature, compared to pristine single-crystalline Si nanowires. We also identified two competing mechanisms governing the thermal transport in superlattice nanowires, responsible for this nonmonotonic behavior: interface modulation in the longitudinal direction significantly depressing the phonon group velocities and hindering heat conduction, and coherent phonons occurring at extremely short periodic lengths counteracting the interface effect and facilitating thermal transport. Our results show trends for superlattice nanowire design for efficient thermoelectrics.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"12 11","pages":"5487–5494"},"PeriodicalIF":9.6000,"publicationDate":"2012-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1021/nl301971k","citationCount":"193","resultStr":"{\"title\":\"Si/Ge Superlattice Nanowires with Ultralow Thermal Conductivity\",\"authors\":\"Ming Hu*, Dimos Poulikakos\",\"doi\":\"10.1021/nl301971k\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The engineering of nanostructured materials with very low thermal conductivity is a necessary step toward the realization of efficient thermoelectric devices. We report here the main results of an investigation with nonequilibrium molecular dynamics simulations on thermal transport in Si/Ge superlattice nanowires aiming at taking advantage of the inherent one dimensionality and the combined presence of surface and interfacial phonon scattering to yield ultralow values for their thermal conductivity. Our calculations revealed that the thermal conductivity of a Si/Ge superlattice nanowire varies nonmonotonically with both the Si/Ge lattice periodic length and the nanowire cross-sectional width. The optimal periodic length corresponds to an order of magnitude (92%) decrease in thermal conductivity at room temperature, compared to pristine single-crystalline Si nanowires. We also identified two competing mechanisms governing the thermal transport in superlattice nanowires, responsible for this nonmonotonic behavior: interface modulation in the longitudinal direction significantly depressing the phonon group velocities and hindering heat conduction, and coherent phonons occurring at extremely short periodic lengths counteracting the interface effect and facilitating thermal transport. Our results show trends for superlattice nanowire design for efficient thermoelectrics.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"12 11\",\"pages\":\"5487–5494\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2012-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1021/nl301971k\",\"citationCount\":\"193\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/nl301971k\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/nl301971k","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Si/Ge Superlattice Nanowires with Ultralow Thermal Conductivity
The engineering of nanostructured materials with very low thermal conductivity is a necessary step toward the realization of efficient thermoelectric devices. We report here the main results of an investigation with nonequilibrium molecular dynamics simulations on thermal transport in Si/Ge superlattice nanowires aiming at taking advantage of the inherent one dimensionality and the combined presence of surface and interfacial phonon scattering to yield ultralow values for their thermal conductivity. Our calculations revealed that the thermal conductivity of a Si/Ge superlattice nanowire varies nonmonotonically with both the Si/Ge lattice periodic length and the nanowire cross-sectional width. The optimal periodic length corresponds to an order of magnitude (92%) decrease in thermal conductivity at room temperature, compared to pristine single-crystalline Si nanowires. We also identified two competing mechanisms governing the thermal transport in superlattice nanowires, responsible for this nonmonotonic behavior: interface modulation in the longitudinal direction significantly depressing the phonon group velocities and hindering heat conduction, and coherent phonons occurring at extremely short periodic lengths counteracting the interface effect and facilitating thermal transport. Our results show trends for superlattice nanowire design for efficient thermoelectrics.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.