生物多样性建模的进步将改进对自然对人类贡献的预测。

IF 16.7 1区 生物学 Q1 ECOLOGY
Trends in ecology & evolution Pub Date : 2024-04-01 Epub Date: 2023-11-15 DOI:10.1016/j.tree.2023.10.011
Jamie M Kass, Keiichi Fukaya, Wilfried Thuiller, Akira S Mori
{"title":"生物多样性建模的进步将改进对自然对人类贡献的预测。","authors":"Jamie M Kass, Keiichi Fukaya, Wilfried Thuiller, Akira S Mori","doi":"10.1016/j.tree.2023.10.011","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate predictions of ecosystem functions and nature's contributions to people (NCP) are needed to prioritize environmental protection and restoration in the Anthropocene. However, our ability to predict NCP is undermined by approaches that rely on biophysical variables and ignore those describing biodiversity, which have strong links to NCP. To foster predictive mapping of NCP, we should harness the latest methods in biodiversity modeling. This field advances rapidly, and new techniques with promising applications for predicting NCP are still underutilized. Here, we argue that employing recent advances in biodiversity modeling can enhance the accuracy and scope of NCP maps and predictions. This enhancement will contribute significantly to the achievement of global objectives to preserve NCP, for both the present and an unpredictable future.</p>","PeriodicalId":23274,"journal":{"name":"Trends in ecology & evolution","volume":null,"pages":null},"PeriodicalIF":16.7000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biodiversity modeling advances will improve predictions of nature's contributions to people.\",\"authors\":\"Jamie M Kass, Keiichi Fukaya, Wilfried Thuiller, Akira S Mori\",\"doi\":\"10.1016/j.tree.2023.10.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate predictions of ecosystem functions and nature's contributions to people (NCP) are needed to prioritize environmental protection and restoration in the Anthropocene. However, our ability to predict NCP is undermined by approaches that rely on biophysical variables and ignore those describing biodiversity, which have strong links to NCP. To foster predictive mapping of NCP, we should harness the latest methods in biodiversity modeling. This field advances rapidly, and new techniques with promising applications for predicting NCP are still underutilized. Here, we argue that employing recent advances in biodiversity modeling can enhance the accuracy and scope of NCP maps and predictions. This enhancement will contribute significantly to the achievement of global objectives to preserve NCP, for both the present and an unpredictable future.</p>\",\"PeriodicalId\":23274,\"journal\":{\"name\":\"Trends in ecology & evolution\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.7000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in ecology & evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tree.2023.10.011\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in ecology & evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tree.2023.10.011","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

人类世需要准确预测生态系统功能和自然对人类的贡献(NCP),以优先考虑环境保护和恢复。然而,我们预测NCP的能力被依赖于生物物理变量的方法所破坏,而忽略了那些描述生物多样性的方法,而生物多样性与NCP有很强的联系。为了促进NCP的预测制图,我们应该利用生物多样性建模的最新方法。这一领域发展迅速,预测新型冠状病毒感染的新技术仍未得到充分利用。在此,我们认为采用生物多样性建模的最新进展可以提高NCP地图和预测的准确性和范围。这一加强将大大有助于实现保护非传染性疾病的全球目标,无论是在当前还是在不可预测的未来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biodiversity modeling advances will improve predictions of nature's contributions to people.

Accurate predictions of ecosystem functions and nature's contributions to people (NCP) are needed to prioritize environmental protection and restoration in the Anthropocene. However, our ability to predict NCP is undermined by approaches that rely on biophysical variables and ignore those describing biodiversity, which have strong links to NCP. To foster predictive mapping of NCP, we should harness the latest methods in biodiversity modeling. This field advances rapidly, and new techniques with promising applications for predicting NCP are still underutilized. Here, we argue that employing recent advances in biodiversity modeling can enhance the accuracy and scope of NCP maps and predictions. This enhancement will contribute significantly to the achievement of global objectives to preserve NCP, for both the present and an unpredictable future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Trends in ecology & evolution
Trends in ecology & evolution 生物-进化生物学
CiteScore
26.50
自引率
3.00%
发文量
178
审稿时长
6-12 weeks
期刊介绍: Trends in Ecology & Evolution (TREE) is a comprehensive journal featuring polished, concise, and readable reviews, opinions, and letters in all areas of ecology and evolutionary science. Catering to researchers, lecturers, teachers, field workers, and students, it serves as a valuable source of information. The journal keeps scientists informed about new developments and ideas across the spectrum of ecology and evolutionary biology, spanning from pure to applied and molecular to global perspectives. In the face of global environmental change, Trends in Ecology & Evolution plays a crucial role in covering all significant issues concerning organisms and their environments, making it a major forum for life scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信