{"title":"倍性状态是肝细胞增殖的决定因素。","authors":"Sierra R Wilson, Andrew W Duncan","doi":"10.1055/a-2211-2144","DOIUrl":null,"url":null,"abstract":"<p><p>The liver's unique chromosomal variations, including polyploidy and aneuploidy, influence hepatocyte identity and function. Among the most well-studied mammalian polyploid cells, hepatocytes exhibit a dynamic interplay between diploid and polyploid states. The ploidy state is dynamic as hepatocytes move through the \"ploidy conveyor,\" undergoing ploidy reversal and re-polyploidization during proliferation. Both diploid and polyploid hepatocytes actively contribute to proliferation, with diploids demonstrating an enhanced proliferative capacity. This enhanced potential positions diploid hepatocytes as primary drivers of liver proliferation in multiple contexts, including homeostasis, regeneration and repopulation, compensatory proliferation following injury, and oncogenic proliferation. This review discusses the influence of ploidy variations on cellular activity. It presents a model for ploidy-associated hepatocyte proliferation, offering a deeper understanding of liver health and disease with the potential to uncover novel treatment approaches.</p>","PeriodicalId":21724,"journal":{"name":"Seminars in liver disease","volume":" ","pages":"460-471"},"PeriodicalIF":4.3000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10862383/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Ploidy State as a Determinant of Hepatocyte Proliferation.\",\"authors\":\"Sierra R Wilson, Andrew W Duncan\",\"doi\":\"10.1055/a-2211-2144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The liver's unique chromosomal variations, including polyploidy and aneuploidy, influence hepatocyte identity and function. Among the most well-studied mammalian polyploid cells, hepatocytes exhibit a dynamic interplay between diploid and polyploid states. The ploidy state is dynamic as hepatocytes move through the \\\"ploidy conveyor,\\\" undergoing ploidy reversal and re-polyploidization during proliferation. Both diploid and polyploid hepatocytes actively contribute to proliferation, with diploids demonstrating an enhanced proliferative capacity. This enhanced potential positions diploid hepatocytes as primary drivers of liver proliferation in multiple contexts, including homeostasis, regeneration and repopulation, compensatory proliferation following injury, and oncogenic proliferation. This review discusses the influence of ploidy variations on cellular activity. It presents a model for ploidy-associated hepatocyte proliferation, offering a deeper understanding of liver health and disease with the potential to uncover novel treatment approaches.</p>\",\"PeriodicalId\":21724,\"journal\":{\"name\":\"Seminars in liver disease\",\"volume\":\" \",\"pages\":\"460-471\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10862383/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seminars in liver disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1055/a-2211-2144\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"GASTROENTEROLOGY & HEPATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seminars in liver disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1055/a-2211-2144","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
The Ploidy State as a Determinant of Hepatocyte Proliferation.
The liver's unique chromosomal variations, including polyploidy and aneuploidy, influence hepatocyte identity and function. Among the most well-studied mammalian polyploid cells, hepatocytes exhibit a dynamic interplay between diploid and polyploid states. The ploidy state is dynamic as hepatocytes move through the "ploidy conveyor," undergoing ploidy reversal and re-polyploidization during proliferation. Both diploid and polyploid hepatocytes actively contribute to proliferation, with diploids demonstrating an enhanced proliferative capacity. This enhanced potential positions diploid hepatocytes as primary drivers of liver proliferation in multiple contexts, including homeostasis, regeneration and repopulation, compensatory proliferation following injury, and oncogenic proliferation. This review discusses the influence of ploidy variations on cellular activity. It presents a model for ploidy-associated hepatocyte proliferation, offering a deeper understanding of liver health and disease with the potential to uncover novel treatment approaches.
期刊介绍:
Seminars in Liver Disease is a quarterly review journal that publishes issues related to the specialties of hepatology and gastroenterology.
As the premiere review journal in the field, Seminars in Liver Disease provides in-depth coverage with articles and issues focusing on topics such as cirrhosis, transplantation, vascular and coagulation disorders, cytokines, hepatitis B & C, Nonalcoholic Steatosis Syndromes (NASH), pediatric liver diseases, hepatic stem cells, porphyrias as well as a myriad of other diseases related to the liver. Attention is also given to the latest developments in drug therapy along with treatment and current management techniques. Seminars in Liver Disease publishes commissioned reviews. Unsolicited reviews of an exceptional nature or original articles presenting remarkable results will be considered, but case reports will not be published.