Xue Dong Chen, Justin George, Lauren M Diepenbrock, Hunter Gossett, Guoping Liu, Jawwad A Qureshi, Lukasz L Stelinski
{"title":"柑桔木虱对吡虫啉抗性的摄食行为和茧虫病。","authors":"Xue Dong Chen, Justin George, Lauren M Diepenbrock, Hunter Gossett, Guoping Liu, Jawwad A Qureshi, Lukasz L Stelinski","doi":"10.1111/1744-7917.13293","DOIUrl":null,"url":null,"abstract":"<p><p>Imidacloprid is a neonicotinoid insecticide used for managing the Asian citrus psyllid, Diaphorina citri Kuwayama, which serves as vector of phytopathogens causing citrus greening. However, development of resistance to neonicotinoids among populations of D. citri has coincided with occasional control failures in the field. The objectives of this research were to (1) survey current levels of imidacloprid resistance in Florida citrus; (2) compare feeding behavior between imidacloprid-resistant and susceptible D. citri using electrical penetration graph recordings, and (3) investigate the possible amplification of insecticide hormoligosis associated with resistance. Field surveys confirmed that the susceptibility of D. citri populations to imidacloprid has decreased in commercial Florida citrus groves compared with a laboratory-susceptible population. Following 12 generations of selection, resistance to imidacloprid increased by 438 fold compared with the susceptible strain. Imidacloprid-susceptible D. citri feeding on citrus exhibited significantly more bouts associated with intercellular pathway (C), phloem penetration (D), phloem salivation (E1), and nonprobing (Np) activities than imidacloprid-resistant counterparts. However, there were no differences observed in the frequency or duration of phloem ingestion or xylem feeding between susceptible and resistant D. citri. There was no statistical difference in fecundity between resistant and susceptible strains. However, the fecundity of imidacloprid-susceptible female D. citri treated with a sublethal concentration of imidacloprid (LC<sub>25</sub>) increased significantly compared with controls, while such hormoligosis was less pronounced among imidacloprid-resistant psyllids. Our results suggest that imidacloprid-resistant psyllids may cease feeding sooner than susceptible counterparts following sublethal exposure to this insecticide, indicative of a behavioral resistance mechanism.</p>","PeriodicalId":13618,"journal":{"name":"Insect Science","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feeding behavior and hormoligosis associated with imidacloprid resistance in Asian citrus psyllid, Diaphorina citri.\",\"authors\":\"Xue Dong Chen, Justin George, Lauren M Diepenbrock, Hunter Gossett, Guoping Liu, Jawwad A Qureshi, Lukasz L Stelinski\",\"doi\":\"10.1111/1744-7917.13293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Imidacloprid is a neonicotinoid insecticide used for managing the Asian citrus psyllid, Diaphorina citri Kuwayama, which serves as vector of phytopathogens causing citrus greening. However, development of resistance to neonicotinoids among populations of D. citri has coincided with occasional control failures in the field. The objectives of this research were to (1) survey current levels of imidacloprid resistance in Florida citrus; (2) compare feeding behavior between imidacloprid-resistant and susceptible D. citri using electrical penetration graph recordings, and (3) investigate the possible amplification of insecticide hormoligosis associated with resistance. Field surveys confirmed that the susceptibility of D. citri populations to imidacloprid has decreased in commercial Florida citrus groves compared with a laboratory-susceptible population. Following 12 generations of selection, resistance to imidacloprid increased by 438 fold compared with the susceptible strain. Imidacloprid-susceptible D. citri feeding on citrus exhibited significantly more bouts associated with intercellular pathway (C), phloem penetration (D), phloem salivation (E1), and nonprobing (Np) activities than imidacloprid-resistant counterparts. However, there were no differences observed in the frequency or duration of phloem ingestion or xylem feeding between susceptible and resistant D. citri. There was no statistical difference in fecundity between resistant and susceptible strains. However, the fecundity of imidacloprid-susceptible female D. citri treated with a sublethal concentration of imidacloprid (LC<sub>25</sub>) increased significantly compared with controls, while such hormoligosis was less pronounced among imidacloprid-resistant psyllids. Our results suggest that imidacloprid-resistant psyllids may cease feeding sooner than susceptible counterparts following sublethal exposure to this insecticide, indicative of a behavioral resistance mechanism.</p>\",\"PeriodicalId\":13618,\"journal\":{\"name\":\"Insect Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insect Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1111/1744-7917.13293\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/1744-7917.13293","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Feeding behavior and hormoligosis associated with imidacloprid resistance in Asian citrus psyllid, Diaphorina citri.
Imidacloprid is a neonicotinoid insecticide used for managing the Asian citrus psyllid, Diaphorina citri Kuwayama, which serves as vector of phytopathogens causing citrus greening. However, development of resistance to neonicotinoids among populations of D. citri has coincided with occasional control failures in the field. The objectives of this research were to (1) survey current levels of imidacloprid resistance in Florida citrus; (2) compare feeding behavior between imidacloprid-resistant and susceptible D. citri using electrical penetration graph recordings, and (3) investigate the possible amplification of insecticide hormoligosis associated with resistance. Field surveys confirmed that the susceptibility of D. citri populations to imidacloprid has decreased in commercial Florida citrus groves compared with a laboratory-susceptible population. Following 12 generations of selection, resistance to imidacloprid increased by 438 fold compared with the susceptible strain. Imidacloprid-susceptible D. citri feeding on citrus exhibited significantly more bouts associated with intercellular pathway (C), phloem penetration (D), phloem salivation (E1), and nonprobing (Np) activities than imidacloprid-resistant counterparts. However, there were no differences observed in the frequency or duration of phloem ingestion or xylem feeding between susceptible and resistant D. citri. There was no statistical difference in fecundity between resistant and susceptible strains. However, the fecundity of imidacloprid-susceptible female D. citri treated with a sublethal concentration of imidacloprid (LC25) increased significantly compared with controls, while such hormoligosis was less pronounced among imidacloprid-resistant psyllids. Our results suggest that imidacloprid-resistant psyllids may cease feeding sooner than susceptible counterparts following sublethal exposure to this insecticide, indicative of a behavioral resistance mechanism.
期刊介绍:
Insect Science is an English-language journal, which publishes original research articles dealing with all fields of research in into insects and other terrestrial arthropods. Papers in any of the following fields will be considered: ecology, behavior, biogeography, physiology, biochemistry, sociobiology, phylogeny, pest management, and exotic incursions. The emphasis of the journal is on the adaptation and evolutionary biology of insects from the molecular to the ecosystem level. Reviews, mini reviews and letters to the editor, book reviews, and information about academic activities of the society are also published.