Corinna M Snashall, Chris W Sutton, Letizia Lo Faro, Carlo Ceresa, Rutger Ploeg, Sadr Ul Shaheed
{"title":"器官灌注液蛋白质组分析中凝胶内和溶液内蛋白水解的比较。","authors":"Corinna M Snashall, Chris W Sutton, Letizia Lo Faro, Carlo Ceresa, Rutger Ploeg, Sadr Ul Shaheed","doi":"10.1186/s12014-023-09440-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The organ perfusion solution (perfusate), collected at clinically and temporally significant stages of the organ preservation and transplantation process, provides a valuable insight into the biological status of an organ over time and prior to reperfusion (transplantation) in the recipient. The objective of this study was to assess two bottom-up proteomics workflows for the extraction of tryptic peptides from the perfusate.</p><p><strong>Experimental design: </strong>Two different kinds of perfusate samples from kidney and liver trials were profiled using liquid chromatography-mass spectrometry (LC-MS/MS). The preparation of clean peptide mixtures for downstream analysis was performed considering different aspects of sample preparation; protein estimation, enrichment, in-gel and urea-based in-solution digestion.</p><p><strong>Results: </strong>In-solution digestion of perfusate allowed identification of the highest number of peptides and proteins with greater sequence coverage and higher confidence data in kidney and liver perfusate. Key pathways identified by gene ontology analysis included complement, coagulation and antioxidant pathways, and a number of biomarkers previously linked to ischemia-reperfusion injury were also observed in perfusate.</p><p><strong>Conclusions: </strong>This study showed that in-solution digestion is a more efficient method for LC-MS/MS analysis of kidney and liver organ perfusion solutions. This method is also quicker and easier than in-gel digestion, allowing for greater sample throughput, with fewer opportunities for experimental error or peptide loss.</p>","PeriodicalId":10468,"journal":{"name":"Clinical proteomics","volume":"20 1","pages":"51"},"PeriodicalIF":2.8000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10648346/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comparison of in-gel and in-solution proteolysis in the proteome profiling of organ perfusion solutions.\",\"authors\":\"Corinna M Snashall, Chris W Sutton, Letizia Lo Faro, Carlo Ceresa, Rutger Ploeg, Sadr Ul Shaheed\",\"doi\":\"10.1186/s12014-023-09440-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>The organ perfusion solution (perfusate), collected at clinically and temporally significant stages of the organ preservation and transplantation process, provides a valuable insight into the biological status of an organ over time and prior to reperfusion (transplantation) in the recipient. The objective of this study was to assess two bottom-up proteomics workflows for the extraction of tryptic peptides from the perfusate.</p><p><strong>Experimental design: </strong>Two different kinds of perfusate samples from kidney and liver trials were profiled using liquid chromatography-mass spectrometry (LC-MS/MS). The preparation of clean peptide mixtures for downstream analysis was performed considering different aspects of sample preparation; protein estimation, enrichment, in-gel and urea-based in-solution digestion.</p><p><strong>Results: </strong>In-solution digestion of perfusate allowed identification of the highest number of peptides and proteins with greater sequence coverage and higher confidence data in kidney and liver perfusate. Key pathways identified by gene ontology analysis included complement, coagulation and antioxidant pathways, and a number of biomarkers previously linked to ischemia-reperfusion injury were also observed in perfusate.</p><p><strong>Conclusions: </strong>This study showed that in-solution digestion is a more efficient method for LC-MS/MS analysis of kidney and liver organ perfusion solutions. This method is also quicker and easier than in-gel digestion, allowing for greater sample throughput, with fewer opportunities for experimental error or peptide loss.</p>\",\"PeriodicalId\":10468,\"journal\":{\"name\":\"Clinical proteomics\",\"volume\":\"20 1\",\"pages\":\"51\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10648346/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical proteomics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12014-023-09440-x\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical proteomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12014-023-09440-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Comparison of in-gel and in-solution proteolysis in the proteome profiling of organ perfusion solutions.
Purpose: The organ perfusion solution (perfusate), collected at clinically and temporally significant stages of the organ preservation and transplantation process, provides a valuable insight into the biological status of an organ over time and prior to reperfusion (transplantation) in the recipient. The objective of this study was to assess two bottom-up proteomics workflows for the extraction of tryptic peptides from the perfusate.
Experimental design: Two different kinds of perfusate samples from kidney and liver trials were profiled using liquid chromatography-mass spectrometry (LC-MS/MS). The preparation of clean peptide mixtures for downstream analysis was performed considering different aspects of sample preparation; protein estimation, enrichment, in-gel and urea-based in-solution digestion.
Results: In-solution digestion of perfusate allowed identification of the highest number of peptides and proteins with greater sequence coverage and higher confidence data in kidney and liver perfusate. Key pathways identified by gene ontology analysis included complement, coagulation and antioxidant pathways, and a number of biomarkers previously linked to ischemia-reperfusion injury were also observed in perfusate.
Conclusions: This study showed that in-solution digestion is a more efficient method for LC-MS/MS analysis of kidney and liver organ perfusion solutions. This method is also quicker and easier than in-gel digestion, allowing for greater sample throughput, with fewer opportunities for experimental error or peptide loss.
期刊介绍:
Clinical Proteomics encompasses all aspects of translational proteomics. Special emphasis will be placed on the application of proteomic technology to all aspects of clinical research and molecular medicine. The journal is committed to rapid scientific review and timely publication of submitted manuscripts.