{"title":"利用分子对接研究揭示了昆虫内源性纤维素酶对木质纤维素分解的潜力。","authors":"Nivetha Ramanathan, Bhuvaragavan Sreeramulu, Meenakumari Mani, Janarthanan Sundaram","doi":"10.1080/14786419.2023.2280169","DOIUrl":null,"url":null,"abstract":"<p><p>Insects possess cellulolytic system capable of producing variegate enzymes with multifarious specificities to break down complex lignocellulosic products. Astonishingly, endoglucanases, exoglucanases and β-glycosidases act sequentially in a synergistic system to facilitate the breakdown of cellulose to utilisable energy source glucose. <i>In silico</i> docking studies of endo-β-1,4-glucanase from 19 different insects belonging to six different orders identified that it possesses high affinity for all the six substrates, including CMC, cellulose, cellotriose, cellotetraose, cellopentose and cellohexaose. Additionally, β-glucosidase from nearly all the reported insect sources also showed considerable affinity towards cellobiose. Van der Waals, conventional hydrogen bonds and carbon-hydrogen bonds stabilise the interaction between the enzyme and different substrates. Molecular dynamics simulations also held up the stability of various complexes. Efficient breakdown of lignocelluloses-based substrates becoming a major focus of industrial and academic communities worldwide, this study can perhaps complement the propensity of insect cellulases for prospected applications.</p>","PeriodicalId":18990,"journal":{"name":"Natural Product Research","volume":" ","pages":"4146-4154"},"PeriodicalIF":1.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Potential of insect endogenous cellulases for lignocellulosic break down deciphered using molecular docking studies.\",\"authors\":\"Nivetha Ramanathan, Bhuvaragavan Sreeramulu, Meenakumari Mani, Janarthanan Sundaram\",\"doi\":\"10.1080/14786419.2023.2280169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Insects possess cellulolytic system capable of producing variegate enzymes with multifarious specificities to break down complex lignocellulosic products. Astonishingly, endoglucanases, exoglucanases and β-glycosidases act sequentially in a synergistic system to facilitate the breakdown of cellulose to utilisable energy source glucose. <i>In silico</i> docking studies of endo-β-1,4-glucanase from 19 different insects belonging to six different orders identified that it possesses high affinity for all the six substrates, including CMC, cellulose, cellotriose, cellotetraose, cellopentose and cellohexaose. Additionally, β-glucosidase from nearly all the reported insect sources also showed considerable affinity towards cellobiose. Van der Waals, conventional hydrogen bonds and carbon-hydrogen bonds stabilise the interaction between the enzyme and different substrates. Molecular dynamics simulations also held up the stability of various complexes. Efficient breakdown of lignocelluloses-based substrates becoming a major focus of industrial and academic communities worldwide, this study can perhaps complement the propensity of insect cellulases for prospected applications.</p>\",\"PeriodicalId\":18990,\"journal\":{\"name\":\"Natural Product Research\",\"volume\":\" \",\"pages\":\"4146-4154\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Product Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1080/14786419.2023.2280169\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Product Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/14786419.2023.2280169","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Potential of insect endogenous cellulases for lignocellulosic break down deciphered using molecular docking studies.
Insects possess cellulolytic system capable of producing variegate enzymes with multifarious specificities to break down complex lignocellulosic products. Astonishingly, endoglucanases, exoglucanases and β-glycosidases act sequentially in a synergistic system to facilitate the breakdown of cellulose to utilisable energy source glucose. In silico docking studies of endo-β-1,4-glucanase from 19 different insects belonging to six different orders identified that it possesses high affinity for all the six substrates, including CMC, cellulose, cellotriose, cellotetraose, cellopentose and cellohexaose. Additionally, β-glucosidase from nearly all the reported insect sources also showed considerable affinity towards cellobiose. Van der Waals, conventional hydrogen bonds and carbon-hydrogen bonds stabilise the interaction between the enzyme and different substrates. Molecular dynamics simulations also held up the stability of various complexes. Efficient breakdown of lignocelluloses-based substrates becoming a major focus of industrial and academic communities worldwide, this study can perhaps complement the propensity of insect cellulases for prospected applications.
期刊介绍:
The aim of Natural Product Research is to publish important contributions in the field of natural product chemistry. The journal covers all aspects of research in the chemistry and biochemistry of naturally occurring compounds.
The communications include coverage of work on natural substances of land and sea and of plants, microbes and animals. Discussions of structure elucidation, synthesis and experimental biosynthesis of natural products as well as developments of methods in these areas are welcomed in the journal. Finally, research papers in fields on the chemistry-biology boundary, eg. fermentation chemistry, plant tissue culture investigations etc., are accepted into the journal.
Natural Product Research issues will be subtitled either ""Part A - Synthesis and Structure"" or ""Part B - Bioactive Natural Products"". for details on this , see the forthcoming articles section.
All manuscript submissions are subject to initial appraisal by the Editor, and, if found suitable for further consideration, to peer review by independent, anonymous expert referees. All peer review is single blind and submission is online via ScholarOne Manuscripts.