输入晶体管工作在中等反转的低噪声电荷敏感放大器的晶体管尺寸方法

N. Aimaier, R. Sidek, M. Hamidon, N. Sulaiman
{"title":"输入晶体管工作在中等反转的低噪声电荷敏感放大器的晶体管尺寸方法","authors":"N. Aimaier, R. Sidek, M. Hamidon, N. Sulaiman","doi":"10.1109/SMELEC.2014.6920828","DOIUrl":null,"url":null,"abstract":"In this paper noise contribution of current source transistors and sizing methodology in charge sensitive amplifier for application in the front-end readout electronics is presented. In modern deep-submicron technologies, MOS transistor operating region tends to shift from strong inversion to moderate inversion, this makes traditional square-law MOS device modeling not applicable anymore. Thus a simplified EKV model, which is quite successful in all CMOS operating regions, has been adopted to develop a new analytical methodology to optimize geometry of current source transistors so that the noise contribution from these transistors is only a fraction of input transistor noise. A charge sensitive amplifier based on dual PMOS cascode structure is designed by adopting this current source transistor sizing methodology, and has been simulated using 130nm CMOS technology. The proposed methodology and noise contribution from current source transistors have been found in good agreement with simulation results using deep-submicron CMOS technology.","PeriodicalId":268203,"journal":{"name":"2014 IEEE International Conference on Semiconductor Electronics (ICSE2014)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Transistor sizing methodology for low noise charge sensitive amplifier with input transistor working in moderate inversion\",\"authors\":\"N. Aimaier, R. Sidek, M. Hamidon, N. Sulaiman\",\"doi\":\"10.1109/SMELEC.2014.6920828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper noise contribution of current source transistors and sizing methodology in charge sensitive amplifier for application in the front-end readout electronics is presented. In modern deep-submicron technologies, MOS transistor operating region tends to shift from strong inversion to moderate inversion, this makes traditional square-law MOS device modeling not applicable anymore. Thus a simplified EKV model, which is quite successful in all CMOS operating regions, has been adopted to develop a new analytical methodology to optimize geometry of current source transistors so that the noise contribution from these transistors is only a fraction of input transistor noise. A charge sensitive amplifier based on dual PMOS cascode structure is designed by adopting this current source transistor sizing methodology, and has been simulated using 130nm CMOS technology. The proposed methodology and noise contribution from current source transistors have been found in good agreement with simulation results using deep-submicron CMOS technology.\",\"PeriodicalId\":268203,\"journal\":{\"name\":\"2014 IEEE International Conference on Semiconductor Electronics (ICSE2014)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Semiconductor Electronics (ICSE2014)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMELEC.2014.6920828\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Semiconductor Electronics (ICSE2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMELEC.2014.6920828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文介绍了用于前端读出电子器件的电荷敏感放大器中电流源晶体管的噪声贡献及尺寸确定方法。在现代深亚微米技术中,MOS晶体管的工作区域有从强反转向中反转转变的趋势,这使得传统的平方律MOS器件建模不再适用。因此,一个简化的EKV模型,这是相当成功的所有CMOS工作区域,已采用开发一种新的分析方法来优化电流源晶体管的几何结构,使这些晶体管的噪声贡献仅为输入晶体管噪声的一小部分。采用该电流源晶体管尺寸设计方法设计了一种基于双PMOS级联结构的电荷敏感放大器,并采用130nm CMOS技术进行了仿真。所提出的方法和电流源晶体管的噪声贡献与采用深亚微米CMOS技术的仿真结果一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transistor sizing methodology for low noise charge sensitive amplifier with input transistor working in moderate inversion
In this paper noise contribution of current source transistors and sizing methodology in charge sensitive amplifier for application in the front-end readout electronics is presented. In modern deep-submicron technologies, MOS transistor operating region tends to shift from strong inversion to moderate inversion, this makes traditional square-law MOS device modeling not applicable anymore. Thus a simplified EKV model, which is quite successful in all CMOS operating regions, has been adopted to develop a new analytical methodology to optimize geometry of current source transistors so that the noise contribution from these transistors is only a fraction of input transistor noise. A charge sensitive amplifier based on dual PMOS cascode structure is designed by adopting this current source transistor sizing methodology, and has been simulated using 130nm CMOS technology. The proposed methodology and noise contribution from current source transistors have been found in good agreement with simulation results using deep-submicron CMOS technology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信