{"title":"可选铜柱凸点设计,减少倒装芯片组装过程中产生的热机械应力","authors":"M. Lofrano, V. Cherman, Mario Gonzalez, E. Beyne","doi":"10.1109/EUROSIME.2017.7926236","DOIUrl":null,"url":null,"abstract":"In this work a Cu pillar design that combines a stiff metal pedestal with a soft polymer as buffer layer has been integrated in a dedicated test vehicle to investigate the thermo mechanical stress induced during flip chip assembly. In-situ electrical measurements of dedicated stress sensors during a Bump Assisted BEOL Stability Indentation (BABSI) test were performed to assess the strength of the bump designs. Furthermore, the package induced stress was monitored in different regions of the test chips by measuring and comparing the ION current of the stress sensors before and after packaging. By combining in-situ electrical measurements and finite element modeling it was possible to quantify the stress level induced in the Si die after packaging. The results show that the use of a stiff pedestal is very efficient to mitigate packaging induced stress.","PeriodicalId":174615,"journal":{"name":"2017 18th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Alternative Cu pillar bumps design to reduce thermomechanical stress induced during flip chip assembly\",\"authors\":\"M. Lofrano, V. Cherman, Mario Gonzalez, E. Beyne\",\"doi\":\"10.1109/EUROSIME.2017.7926236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work a Cu pillar design that combines a stiff metal pedestal with a soft polymer as buffer layer has been integrated in a dedicated test vehicle to investigate the thermo mechanical stress induced during flip chip assembly. In-situ electrical measurements of dedicated stress sensors during a Bump Assisted BEOL Stability Indentation (BABSI) test were performed to assess the strength of the bump designs. Furthermore, the package induced stress was monitored in different regions of the test chips by measuring and comparing the ION current of the stress sensors before and after packaging. By combining in-situ electrical measurements and finite element modeling it was possible to quantify the stress level induced in the Si die after packaging. The results show that the use of a stiff pedestal is very efficient to mitigate packaging induced stress.\",\"PeriodicalId\":174615,\"journal\":{\"name\":\"2017 18th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 18th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUROSIME.2017.7926236\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 18th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROSIME.2017.7926236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Alternative Cu pillar bumps design to reduce thermomechanical stress induced during flip chip assembly
In this work a Cu pillar design that combines a stiff metal pedestal with a soft polymer as buffer layer has been integrated in a dedicated test vehicle to investigate the thermo mechanical stress induced during flip chip assembly. In-situ electrical measurements of dedicated stress sensors during a Bump Assisted BEOL Stability Indentation (BABSI) test were performed to assess the strength of the bump designs. Furthermore, the package induced stress was monitored in different regions of the test chips by measuring and comparing the ION current of the stress sensors before and after packaging. By combining in-situ electrical measurements and finite element modeling it was possible to quantify the stress level induced in the Si die after packaging. The results show that the use of a stiff pedestal is very efficient to mitigate packaging induced stress.