正在进行的工作:通过改变偏移量减少静态优先级任务集的响应时间

Aaron Wong, A. Cheng
{"title":"正在进行的工作:通过改变偏移量减少静态优先级任务集的响应时间","authors":"Aaron Wong, A. Cheng","doi":"10.1109/RTSS46320.2019.00072","DOIUrl":null,"url":null,"abstract":"The goal of this research is to reduce the maximum response time of tasks within a task set by introducing offsets. In this research, we propose an iterative method to determine the best offset for a given task. This method iterates through a set of tasks starting with the task having the highest priority to determine which offset gives the shortest maximum response time. Reducing the maximum response time can lead to a more efficient system and avoids over-provisioning of hardware resources.","PeriodicalId":102892,"journal":{"name":"2019 IEEE Real-Time Systems Symposium (RTSS)","volume":"128 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Work-in-Progress: Reducing Response Time of Static Priority Task Sets by Varying Offsets\",\"authors\":\"Aaron Wong, A. Cheng\",\"doi\":\"10.1109/RTSS46320.2019.00072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of this research is to reduce the maximum response time of tasks within a task set by introducing offsets. In this research, we propose an iterative method to determine the best offset for a given task. This method iterates through a set of tasks starting with the task having the highest priority to determine which offset gives the shortest maximum response time. Reducing the maximum response time can lead to a more efficient system and avoids over-provisioning of hardware resources.\",\"PeriodicalId\":102892,\"journal\":{\"name\":\"2019 IEEE Real-Time Systems Symposium (RTSS)\",\"volume\":\"128 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Real-Time Systems Symposium (RTSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTSS46320.2019.00072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Real-Time Systems Symposium (RTSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTSS46320.2019.00072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本研究的目的是通过引入偏移量来减少任务集中任务的最大响应时间。在这项研究中,我们提出了一种迭代方法来确定给定任务的最佳偏移量。此方法从具有最高优先级的任务开始迭代一组任务,以确定哪个偏移量提供最短的最大响应时间。减少最大响应时间可以提高系统效率,并避免硬件资源的过度供应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Work-in-Progress: Reducing Response Time of Static Priority Task Sets by Varying Offsets
The goal of this research is to reduce the maximum response time of tasks within a task set by introducing offsets. In this research, we propose an iterative method to determine the best offset for a given task. This method iterates through a set of tasks starting with the task having the highest priority to determine which offset gives the shortest maximum response time. Reducing the maximum response time can lead to a more efficient system and avoids over-provisioning of hardware resources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信