基于轨迹表示聚类的对手建模

Yongliang Lv, Yan Zheng, Jianye Hao
{"title":"基于轨迹表示聚类的对手建模","authors":"Yongliang Lv, Yan Zheng, Jianye Hao","doi":"10.20517/ir.2022.09","DOIUrl":null,"url":null,"abstract":"For a non-stationary opponent in a multi-agent environment, traditional methods model the opponent through its complex information to learn one or more optimal response policies. However, the response policy learned earlier is prone to catastrophic forgetting due to data imbalance in the online-updated replay buffer for non-stationary changes of opponent policies. This paper focuses on how to learn new response policies without forgetting old policies that have been learned when the opponent policy is constantly changing. We extract the representation of opponent policies and make explicit clustering distinctions through the contrastive learning autoencoder. With the idea of balancing the replay buffer, we maintain continuous learning of the trajectory data of various opponent policies that have appeared to avoid policy forgetting. Finally, we demonstrate the effectiveness of the method under a classical opponent modeling environment (soccer) and show the clustering effect of different opponent policies.","PeriodicalId":426514,"journal":{"name":"Intelligence & Robotics","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Opponent modeling with trajectory representation clustering\",\"authors\":\"Yongliang Lv, Yan Zheng, Jianye Hao\",\"doi\":\"10.20517/ir.2022.09\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a non-stationary opponent in a multi-agent environment, traditional methods model the opponent through its complex information to learn one or more optimal response policies. However, the response policy learned earlier is prone to catastrophic forgetting due to data imbalance in the online-updated replay buffer for non-stationary changes of opponent policies. This paper focuses on how to learn new response policies without forgetting old policies that have been learned when the opponent policy is constantly changing. We extract the representation of opponent policies and make explicit clustering distinctions through the contrastive learning autoencoder. With the idea of balancing the replay buffer, we maintain continuous learning of the trajectory data of various opponent policies that have appeared to avoid policy forgetting. Finally, we demonstrate the effectiveness of the method under a classical opponent modeling environment (soccer) and show the clustering effect of different opponent policies.\",\"PeriodicalId\":426514,\"journal\":{\"name\":\"Intelligence & Robotics\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligence & Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20517/ir.2022.09\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence & Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/ir.2022.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于多智能体环境中的非平稳对手,传统方法是通过对手的复杂信息对其建模,以学习一个或多个最优响应策略。然而,对于对手策略的非平稳变化,由于在线更新重放缓冲区中的数据不平衡,早期学习到的响应策略容易发生灾难性遗忘。本文主要研究在对手策略不断变化的情况下,如何学习新的响应策略而不忘记已经学习到的旧策略。我们通过对比学习自编码器提取对手策略的表示并进行明确的聚类区分。在平衡重放缓冲的思想下,我们持续学习各种对手策略的轨迹数据,以避免策略遗忘。最后,我们在经典对手建模环境(足球)下验证了该方法的有效性,并展示了不同对手策略的聚类效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Opponent modeling with trajectory representation clustering
For a non-stationary opponent in a multi-agent environment, traditional methods model the opponent through its complex information to learn one or more optimal response policies. However, the response policy learned earlier is prone to catastrophic forgetting due to data imbalance in the online-updated replay buffer for non-stationary changes of opponent policies. This paper focuses on how to learn new response policies without forgetting old policies that have been learned when the opponent policy is constantly changing. We extract the representation of opponent policies and make explicit clustering distinctions through the contrastive learning autoencoder. With the idea of balancing the replay buffer, we maintain continuous learning of the trajectory data of various opponent policies that have appeared to avoid policy forgetting. Finally, we demonstrate the effectiveness of the method under a classical opponent modeling environment (soccer) and show the clustering effect of different opponent policies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信