M. Yahyaoui, K. Limame, B. Jaber, A. Elghazouali, S. Sayouri
{"title":"溶胶-凝胶法制备掺铅Y2Ti2O7焦绿石纳米粉体的合成及结构研究","authors":"M. Yahyaoui, K. Limame, B. Jaber, A. Elghazouali, S. Sayouri","doi":"10.15866/IREPHY.V7I6.4457","DOIUrl":null,"url":null,"abstract":"Pyrochlore-type lead doped yttrium titanate (Y2Ti2O7) nanoparticules were successfully synthesized by a sol gel method through the destabilization of colloidal solution (DCS) at a relatively low temperature. The as-preparation samples were characterized using X-ray diffraction (XRD), Fourier-transform-Infrared spectroscopy (FT-IR) and Raman spectroscopy. The results show that doping with 10% of Pb2+ does not bring any structural change, however further Pb-doping ( 20% ≤ x ≤40% ) leads to formation of Y2Ti2O7 phase along with PbTiO3 phase, which indicates that the limit of solubility of Pb2+ in Y2Ti2O7 is under 20%. The evaluated experimental value of this limit agrees with that calculated from the limiting radii ratio stabilization of the pyrochlore structure A2B2O7.","PeriodicalId":448231,"journal":{"name":"International Review of Physics","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Synthesis and Structural Studies of Sol Gel Processed Nanopowders of Lead Doped Y2Ti2O7 Pyrochlores\",\"authors\":\"M. Yahyaoui, K. Limame, B. Jaber, A. Elghazouali, S. Sayouri\",\"doi\":\"10.15866/IREPHY.V7I6.4457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pyrochlore-type lead doped yttrium titanate (Y2Ti2O7) nanoparticules were successfully synthesized by a sol gel method through the destabilization of colloidal solution (DCS) at a relatively low temperature. The as-preparation samples were characterized using X-ray diffraction (XRD), Fourier-transform-Infrared spectroscopy (FT-IR) and Raman spectroscopy. The results show that doping with 10% of Pb2+ does not bring any structural change, however further Pb-doping ( 20% ≤ x ≤40% ) leads to formation of Y2Ti2O7 phase along with PbTiO3 phase, which indicates that the limit of solubility of Pb2+ in Y2Ti2O7 is under 20%. The evaluated experimental value of this limit agrees with that calculated from the limiting radii ratio stabilization of the pyrochlore structure A2B2O7.\",\"PeriodicalId\":448231,\"journal\":{\"name\":\"International Review of Physics\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Review of Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15866/IREPHY.V7I6.4457\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Review of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15866/IREPHY.V7I6.4457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Synthesis and Structural Studies of Sol Gel Processed Nanopowders of Lead Doped Y2Ti2O7 Pyrochlores
Pyrochlore-type lead doped yttrium titanate (Y2Ti2O7) nanoparticules were successfully synthesized by a sol gel method through the destabilization of colloidal solution (DCS) at a relatively low temperature. The as-preparation samples were characterized using X-ray diffraction (XRD), Fourier-transform-Infrared spectroscopy (FT-IR) and Raman spectroscopy. The results show that doping with 10% of Pb2+ does not bring any structural change, however further Pb-doping ( 20% ≤ x ≤40% ) leads to formation of Y2Ti2O7 phase along with PbTiO3 phase, which indicates that the limit of solubility of Pb2+ in Y2Ti2O7 is under 20%. The evaluated experimental value of this limit agrees with that calculated from the limiting radii ratio stabilization of the pyrochlore structure A2B2O7.