碳分母

D. Fannon, M. Laboy
{"title":"碳分母","authors":"D. Fannon, M. Laboy","doi":"10.35483/acsa.aia.fallintercarbon.20.9","DOIUrl":null,"url":null,"abstract":"Mitigating climate change demands rapid reductions of greenhouse gas emissions from the construction and operation of buildings. As the design and construction industry improves tools and techniques for adding up buildings’ contributions to greenhouse gas emissions it must also consider and critique the methods used to normalize these data for analysis: how to divide them. Using Life Cycle Assessment methods, we accounted for the lifetime global warming potential of four case study buildings, each endemic of a primary structural material: steel, concrete, masonry, and mass timber. To improve the critical understanding of these denominators role in comparisons and decisions, we normalized the absolute totals using spatial (kgCO2eq/m2), temporal (kgCO2eq/year), and human (kgCO2eq/person) dimensions. The expanded analysis and visualization of lifetime carbon using novel metrics more closely associates these impacts with buildings’ purpose to shelter people over time. Attributing emissions to people, rather than buildings offers a meaningful and nuanced basis for comparison, for example, normalizing based on occupants shows that as the density increases, carbon intensity per person declines. Attending to the spatial demands of use, dividing emissions by net rather than gross area means emissions intensity decreases as building systems become more spatially efficient, while simultaneously increasing the potential occupant density. In long-lived buildings, the temporal carbon intensity (per year, or per generation) declines with age, and the time value of carbon suggests that future emissions reductions may be worth less than the present emissions to achieve them compared to even the least carbon-intensive new construction, thus emphasizing the urgent need for adaptation of existing buildings. A critical reassessment of the denominators used to normalize emissions complicates short-term considerations of life cycle emissions and militates for an architecture of persistence: designed for human use and reuse, for adaptation and maintenance.","PeriodicalId":288990,"journal":{"name":"2020 AIA/ACSA Intersections Research Conference: CARBON","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbon Denominators\",\"authors\":\"D. Fannon, M. Laboy\",\"doi\":\"10.35483/acsa.aia.fallintercarbon.20.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mitigating climate change demands rapid reductions of greenhouse gas emissions from the construction and operation of buildings. As the design and construction industry improves tools and techniques for adding up buildings’ contributions to greenhouse gas emissions it must also consider and critique the methods used to normalize these data for analysis: how to divide them. Using Life Cycle Assessment methods, we accounted for the lifetime global warming potential of four case study buildings, each endemic of a primary structural material: steel, concrete, masonry, and mass timber. To improve the critical understanding of these denominators role in comparisons and decisions, we normalized the absolute totals using spatial (kgCO2eq/m2), temporal (kgCO2eq/year), and human (kgCO2eq/person) dimensions. The expanded analysis and visualization of lifetime carbon using novel metrics more closely associates these impacts with buildings’ purpose to shelter people over time. Attributing emissions to people, rather than buildings offers a meaningful and nuanced basis for comparison, for example, normalizing based on occupants shows that as the density increases, carbon intensity per person declines. Attending to the spatial demands of use, dividing emissions by net rather than gross area means emissions intensity decreases as building systems become more spatially efficient, while simultaneously increasing the potential occupant density. In long-lived buildings, the temporal carbon intensity (per year, or per generation) declines with age, and the time value of carbon suggests that future emissions reductions may be worth less than the present emissions to achieve them compared to even the least carbon-intensive new construction, thus emphasizing the urgent need for adaptation of existing buildings. A critical reassessment of the denominators used to normalize emissions complicates short-term considerations of life cycle emissions and militates for an architecture of persistence: designed for human use and reuse, for adaptation and maintenance.\",\"PeriodicalId\":288990,\"journal\":{\"name\":\"2020 AIA/ACSA Intersections Research Conference: CARBON\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 AIA/ACSA Intersections Research Conference: CARBON\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35483/acsa.aia.fallintercarbon.20.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 AIA/ACSA Intersections Research Conference: CARBON","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35483/acsa.aia.fallintercarbon.20.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

减缓气候变化要求迅速减少建筑建设和运营过程中的温室气体排放。随着设计和建筑行业改进了计算建筑物温室气体排放量的工具和技术,它也必须考虑和批评用于将这些数据规范化以供分析的方法:如何划分它们。使用生命周期评估方法,我们计算了四个案例研究建筑的生命周期全球变暖潜势,每个案例研究建筑都有一种主要结构材料:钢、混凝土、砖石和大量木材。为了提高对这些分母在比较和决策中的作用的批判性理解,我们使用空间(kgCO2eq/m2)、时间(kgCO2eq/年)和人类(kgCO2eq/人)维度对绝对总量进行了标准化。使用新指标对终身碳进行扩展分析和可视化,将这些影响与建筑物长期为人们提供庇护的目的更紧密地联系在一起。将排放归因于人,而不是建筑物,为比较提供了有意义和细致入微的基础,例如,基于居住者的正常化表明,随着密度的增加,人均碳强度下降。考虑到使用的空间需求,将排放量除以净而不是总面积意味着随着建筑系统的空间效率提高,排放强度会降低,同时增加潜在的居住者密度。在长寿命建筑中,时间碳强度(每年或每一代)随着年龄的增长而下降,碳的时间价值表明,与碳强度最低的新建筑相比,未来减排的价值可能低于目前的排放量,因此强调了对现有建筑进行改造的迫切需要。对用于使排放正常化的分母进行关键的重新评估,使对生命周期排放的短期考虑变得复杂,并不利于持久性架构:为人类使用和再利用、适应和维护而设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Carbon Denominators
Mitigating climate change demands rapid reductions of greenhouse gas emissions from the construction and operation of buildings. As the design and construction industry improves tools and techniques for adding up buildings’ contributions to greenhouse gas emissions it must also consider and critique the methods used to normalize these data for analysis: how to divide them. Using Life Cycle Assessment methods, we accounted for the lifetime global warming potential of four case study buildings, each endemic of a primary structural material: steel, concrete, masonry, and mass timber. To improve the critical understanding of these denominators role in comparisons and decisions, we normalized the absolute totals using spatial (kgCO2eq/m2), temporal (kgCO2eq/year), and human (kgCO2eq/person) dimensions. The expanded analysis and visualization of lifetime carbon using novel metrics more closely associates these impacts with buildings’ purpose to shelter people over time. Attributing emissions to people, rather than buildings offers a meaningful and nuanced basis for comparison, for example, normalizing based on occupants shows that as the density increases, carbon intensity per person declines. Attending to the spatial demands of use, dividing emissions by net rather than gross area means emissions intensity decreases as building systems become more spatially efficient, while simultaneously increasing the potential occupant density. In long-lived buildings, the temporal carbon intensity (per year, or per generation) declines with age, and the time value of carbon suggests that future emissions reductions may be worth less than the present emissions to achieve them compared to even the least carbon-intensive new construction, thus emphasizing the urgent need for adaptation of existing buildings. A critical reassessment of the denominators used to normalize emissions complicates short-term considerations of life cycle emissions and militates for an architecture of persistence: designed for human use and reuse, for adaptation and maintenance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信