基于双SONC锥和线性规划的全局优化

Mareike Dressler, Janin Heuer, Helen Naumann, T. Wolff
{"title":"基于双SONC锥和线性规划的全局优化","authors":"Mareike Dressler, Janin Heuer, Helen Naumann, T. Wolff","doi":"10.1145/3373207.3404043","DOIUrl":null,"url":null,"abstract":"Using the dual cone of sums of nonnegative circuits (SONC), we provide a relaxation of the global optimization problem to minimize an exponential sum and, as a special case, a multivariate real polynomial. Our approach builds on two key observations. First, that the dual SONC cone is contained in the primal one. Hence, containment in this cone is a certificate of nonnegativity. Second, we show that membership in the dual cone can be verified by a linear program. We implement the algorithm and present initial experimental results comparing our method to existing approaches.","PeriodicalId":186699,"journal":{"name":"Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Global optimization via the dual SONC cone and linear programming\",\"authors\":\"Mareike Dressler, Janin Heuer, Helen Naumann, T. Wolff\",\"doi\":\"10.1145/3373207.3404043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using the dual cone of sums of nonnegative circuits (SONC), we provide a relaxation of the global optimization problem to minimize an exponential sum and, as a special case, a multivariate real polynomial. Our approach builds on two key observations. First, that the dual SONC cone is contained in the primal one. Hence, containment in this cone is a certificate of nonnegativity. Second, we show that membership in the dual cone can be verified by a linear program. We implement the algorithm and present initial experimental results comparing our method to existing approaches.\",\"PeriodicalId\":186699,\"journal\":{\"name\":\"Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3373207.3404043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3373207.3404043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

利用非负回路和的对偶锥,给出了指数和最小化全局优化问题的一个松弛解,并作为一个特例,给出了多元实多项式最小化全局优化问题的松弛解。我们的方法建立在两个关键观察的基础上。首先,双声波锥包含在原始的声波锥中。因此,在这个锥体内的遏制是一个非消极性的证明。其次,我们证明了对偶锥的隶属性可以用一个线性规划来验证。我们实现了该算法,并给出了与现有方法比较的初步实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global optimization via the dual SONC cone and linear programming
Using the dual cone of sums of nonnegative circuits (SONC), we provide a relaxation of the global optimization problem to minimize an exponential sum and, as a special case, a multivariate real polynomial. Our approach builds on two key observations. First, that the dual SONC cone is contained in the primal one. Hence, containment in this cone is a certificate of nonnegativity. Second, we show that membership in the dual cone can be verified by a linear program. We implement the algorithm and present initial experimental results comparing our method to existing approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信