{"title":"低温器件转移制备高功率gan -on-金刚石hemt的热建模","authors":"K. Chu, T. Yurovchak, P. Chao, C. Creamer","doi":"10.1109/CSICS.2013.6659246","DOIUrl":null,"url":null,"abstract":"We report on a novel fabrication process of GaN-on-Diamond high electron mobility transistors (HEMTs) and its resulting thermal performance enhancement over conventional GaN-on-SiC technology. In this process, GaN devices are first fabricated on their epitaxial substrate (e.g. sapphire or SiC) before being removed from the original substrate and bonded onto a high-thermal-conductivity diamond substrate at low temperature. Process flow and technology progress is described. Finite-element thermal analysis is performed to quantify the thermal performance improvement of our GaN-on-Diamond design over conventional GaN-on-SiC technology together with the impact of thermal boundary resistance at the GaN/diamond bonding interface.","PeriodicalId":257256,"journal":{"name":"2013 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)","volume":"40 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Thermal Modeling of High Power GaN-on-Diamond HEMTs Fabricated by Low-Temperature Device Transfer Process\",\"authors\":\"K. Chu, T. Yurovchak, P. Chao, C. Creamer\",\"doi\":\"10.1109/CSICS.2013.6659246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report on a novel fabrication process of GaN-on-Diamond high electron mobility transistors (HEMTs) and its resulting thermal performance enhancement over conventional GaN-on-SiC technology. In this process, GaN devices are first fabricated on their epitaxial substrate (e.g. sapphire or SiC) before being removed from the original substrate and bonded onto a high-thermal-conductivity diamond substrate at low temperature. Process flow and technology progress is described. Finite-element thermal analysis is performed to quantify the thermal performance improvement of our GaN-on-Diamond design over conventional GaN-on-SiC technology together with the impact of thermal boundary resistance at the GaN/diamond bonding interface.\",\"PeriodicalId\":257256,\"journal\":{\"name\":\"2013 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)\",\"volume\":\"40 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSICS.2013.6659246\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSICS.2013.6659246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Thermal Modeling of High Power GaN-on-Diamond HEMTs Fabricated by Low-Temperature Device Transfer Process
We report on a novel fabrication process of GaN-on-Diamond high electron mobility transistors (HEMTs) and its resulting thermal performance enhancement over conventional GaN-on-SiC technology. In this process, GaN devices are first fabricated on their epitaxial substrate (e.g. sapphire or SiC) before being removed from the original substrate and bonded onto a high-thermal-conductivity diamond substrate at low temperature. Process flow and technology progress is described. Finite-element thermal analysis is performed to quantify the thermal performance improvement of our GaN-on-Diamond design over conventional GaN-on-SiC technology together with the impact of thermal boundary resistance at the GaN/diamond bonding interface.