可扩展轨迹估计的广义标签分组

Changbeom Shim, Ji Youn Lee, D. Moratuwage, D. Kim, Y. Chung
{"title":"可扩展轨迹估计的广义标签分组","authors":"Changbeom Shim, Ji Youn Lee, D. Moratuwage, D. Kim, Y. Chung","doi":"10.1109/ICCAIS56082.2022.9990167","DOIUrl":null,"url":null,"abstract":"Multi-Object Tracking (MOT) is concerned with estimating trajectories from sensor measurements. MOT using the Random Finite Set (RFS) framework has been gaining popularity due to its rigorous mathematical foundation and versatility in applications. Notably, large-scale trajectory estimation can be successfully achieved by the label-partitioned Generalized Labeled Multi-Bernoulli (GLMB) filter framework. In this work, we propose an efficient method for grouping object labels in scalable GLMB filtering. Specifically, the label grouping problem for parallel computation is generalized by considering the intersection of predicted measurements, i.e., uncertainty regions. The proposed approach provides a flexible criterion to construct label graphs, whereupon a large number of object labels can be rapidly determined whether to be grouped or not. We demonstrate the performance of our method via large-scale data sets.","PeriodicalId":273404,"journal":{"name":"2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Generalized Label Grouping for Scalable Trajectory Estimation\",\"authors\":\"Changbeom Shim, Ji Youn Lee, D. Moratuwage, D. Kim, Y. Chung\",\"doi\":\"10.1109/ICCAIS56082.2022.9990167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-Object Tracking (MOT) is concerned with estimating trajectories from sensor measurements. MOT using the Random Finite Set (RFS) framework has been gaining popularity due to its rigorous mathematical foundation and versatility in applications. Notably, large-scale trajectory estimation can be successfully achieved by the label-partitioned Generalized Labeled Multi-Bernoulli (GLMB) filter framework. In this work, we propose an efficient method for grouping object labels in scalable GLMB filtering. Specifically, the label grouping problem for parallel computation is generalized by considering the intersection of predicted measurements, i.e., uncertainty regions. The proposed approach provides a flexible criterion to construct label graphs, whereupon a large number of object labels can be rapidly determined whether to be grouped or not. We demonstrate the performance of our method via large-scale data sets.\",\"PeriodicalId\":273404,\"journal\":{\"name\":\"2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAIS56082.2022.9990167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAIS56082.2022.9990167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

多目标跟踪(MOT)涉及从传感器测量中估计轨迹。使用随机有限集(RFS)框架的MOT由于其严格的数学基础和应用的通用性而越来越受欢迎。值得注意的是,通过标记分割的广义标记多伯努利(GLMB)滤波器框架可以成功地实现大规模轨迹估计。在这项工作中,我们提出了一种有效的可扩展GLMB过滤中对象标签分组的方法。具体地说,通过考虑预测测量的交集,即不确定区域,推广了并行计算的标签分组问题。该方法为构建标签图提供了一个灵活的准则,从而可以快速确定大量对象标签是否分组。我们通过大规模数据集证明了我们的方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized Label Grouping for Scalable Trajectory Estimation
Multi-Object Tracking (MOT) is concerned with estimating trajectories from sensor measurements. MOT using the Random Finite Set (RFS) framework has been gaining popularity due to its rigorous mathematical foundation and versatility in applications. Notably, large-scale trajectory estimation can be successfully achieved by the label-partitioned Generalized Labeled Multi-Bernoulli (GLMB) filter framework. In this work, we propose an efficient method for grouping object labels in scalable GLMB filtering. Specifically, the label grouping problem for parallel computation is generalized by considering the intersection of predicted measurements, i.e., uncertainty regions. The proposed approach provides a flexible criterion to construct label graphs, whereupon a large number of object labels can be rapidly determined whether to be grouped or not. We demonstrate the performance of our method via large-scale data sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信