基于粒子滤波的月球导航探测SLAM算法

N. Win, Kazuki Kida, Matsuhiro Ko, Suzuki Jiei, S. Cosentino, H. Ishii, A. Takanishi
{"title":"基于粒子滤波的月球导航探测SLAM算法","authors":"N. Win, Kazuki Kida, Matsuhiro Ko, Suzuki Jiei, S. Cosentino, H. Ishii, A. Takanishi","doi":"10.1109/ICRAE48301.2019.9043804","DOIUrl":null,"url":null,"abstract":"This paper presents a simultaneous localization and mapping (SLAM) system for lunar exploration. The proposed SLAM algorithm presents a significantly lower computational complexity compared to the state-of-the-art solutions, due the use of a Rao-Blackwellised particle filter with adaptive and compound resampling. The proposed SLAM sensor system consists of one light detecting and ranging sensor (LIDAR) and one IMU, to minimize illumination-dependent errors; as the lunar environment, and in particular the target exploration region around the Marius Hills hole, presents very variable illumination conditions. The system was tested via simulation, using existing environmental data from the mare tranquillitatis pit crater.","PeriodicalId":270665,"journal":{"name":"2019 4th International Conference on Robotics and Automation Engineering (ICRAE)","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Novel Particle Filter Based SLAM Algorithm for Lunar Navigation and Exploration\",\"authors\":\"N. Win, Kazuki Kida, Matsuhiro Ko, Suzuki Jiei, S. Cosentino, H. Ishii, A. Takanishi\",\"doi\":\"10.1109/ICRAE48301.2019.9043804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a simultaneous localization and mapping (SLAM) system for lunar exploration. The proposed SLAM algorithm presents a significantly lower computational complexity compared to the state-of-the-art solutions, due the use of a Rao-Blackwellised particle filter with adaptive and compound resampling. The proposed SLAM sensor system consists of one light detecting and ranging sensor (LIDAR) and one IMU, to minimize illumination-dependent errors; as the lunar environment, and in particular the target exploration region around the Marius Hills hole, presents very variable illumination conditions. The system was tested via simulation, using existing environmental data from the mare tranquillitatis pit crater.\",\"PeriodicalId\":270665,\"journal\":{\"name\":\"2019 4th International Conference on Robotics and Automation Engineering (ICRAE)\",\"volume\":\"115 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 4th International Conference on Robotics and Automation Engineering (ICRAE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRAE48301.2019.9043804\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 4th International Conference on Robotics and Automation Engineering (ICRAE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRAE48301.2019.9043804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种用于月球探测的同步定位与制图(SLAM)系统。由于使用了具有自适应和复合重采样的rao - blackwell化粒子滤波器,因此与最先进的解决方案相比,所提出的SLAM算法的计算复杂度显着降低。提出的SLAM传感器系统由一个光探测和测距传感器(LIDAR)和一个IMU组成,以最小化光照相关误差;因为月球环境,特别是马吕斯山洞周围的目标勘探区域,呈现出非常多变的照明条件。该系统通过模拟测试,使用了来自mare tranquillitatis坑的现有环境数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Particle Filter Based SLAM Algorithm for Lunar Navigation and Exploration
This paper presents a simultaneous localization and mapping (SLAM) system for lunar exploration. The proposed SLAM algorithm presents a significantly lower computational complexity compared to the state-of-the-art solutions, due the use of a Rao-Blackwellised particle filter with adaptive and compound resampling. The proposed SLAM sensor system consists of one light detecting and ranging sensor (LIDAR) and one IMU, to minimize illumination-dependent errors; as the lunar environment, and in particular the target exploration region around the Marius Hills hole, presents very variable illumination conditions. The system was tested via simulation, using existing environmental data from the mare tranquillitatis pit crater.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信