余数系统中椭圆曲线点上密码的有效实现

M. Babenko, A. Redvanov, M. Deryabin, N. Chervyakov, A. Nazarov, S. Al-Galda, I. Vashchenko, I. Dvoryaninova, Elena Nepretimova
{"title":"余数系统中椭圆曲线点上密码的有效实现","authors":"M. Babenko, A. Redvanov, M. Deryabin, N. Chervyakov, A. Nazarov, S. Al-Galda, I. Vashchenko, I. Dvoryaninova, Elena Nepretimova","doi":"10.1109/EnT47717.2019.9030592","DOIUrl":null,"url":null,"abstract":"The article explores the question of the effective implementation of arithmetic operations with points of an elliptic curve given over a prime field. Given that the basic arithmetic operations with points of an elliptic curve are the operations of adding points and doubling points, we study the question of implementing the arithmetic operations of adding and doubling points in various coordinate systems using the weighted number system and using the Residue Number System (RNS). We have shown that using the fourmodule RNS allows you to get an average gain for the operation of adding points of the elliptic curve of 8.67% and for the operation of doubling the points of the elliptic curve of 8.32% compared to the implementation using the operation of modular multiplication with special moduli from NIST FIPS 186.","PeriodicalId":288550,"journal":{"name":"2019 International Conference on Engineering and Telecommunication (EnT)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Efficient Implementation of Cryptography on Points of an Elliptic Curve in Residue Number System\",\"authors\":\"M. Babenko, A. Redvanov, M. Deryabin, N. Chervyakov, A. Nazarov, S. Al-Galda, I. Vashchenko, I. Dvoryaninova, Elena Nepretimova\",\"doi\":\"10.1109/EnT47717.2019.9030592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article explores the question of the effective implementation of arithmetic operations with points of an elliptic curve given over a prime field. Given that the basic arithmetic operations with points of an elliptic curve are the operations of adding points and doubling points, we study the question of implementing the arithmetic operations of adding and doubling points in various coordinate systems using the weighted number system and using the Residue Number System (RNS). We have shown that using the fourmodule RNS allows you to get an average gain for the operation of adding points of the elliptic curve of 8.67% and for the operation of doubling the points of the elliptic curve of 8.32% compared to the implementation using the operation of modular multiplication with special moduli from NIST FIPS 186.\",\"PeriodicalId\":288550,\"journal\":{\"name\":\"2019 International Conference on Engineering and Telecommunication (EnT)\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Engineering and Telecommunication (EnT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EnT47717.2019.9030592\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Engineering and Telecommunication (EnT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EnT47717.2019.9030592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文探讨了素数域上给定椭圆曲线点的算术运算的有效实现问题。鉴于椭圆曲线上点的基本算术运算是加点和加倍点的运算,研究了利用加权数系统和余数系统在各种坐标系下实现加点和加倍点的算术运算问题。我们已经证明,与使用NIST FIPS 186中特殊模的模乘法操作相比,使用四模RNS可以使椭圆曲线的加法操作的平均增益为8.67%,椭圆曲线的加倍操作的平均增益为8.32%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Implementation of Cryptography on Points of an Elliptic Curve in Residue Number System
The article explores the question of the effective implementation of arithmetic operations with points of an elliptic curve given over a prime field. Given that the basic arithmetic operations with points of an elliptic curve are the operations of adding points and doubling points, we study the question of implementing the arithmetic operations of adding and doubling points in various coordinate systems using the weighted number system and using the Residue Number System (RNS). We have shown that using the fourmodule RNS allows you to get an average gain for the operation of adding points of the elliptic curve of 8.67% and for the operation of doubling the points of the elliptic curve of 8.32% compared to the implementation using the operation of modular multiplication with special moduli from NIST FIPS 186.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信