{"title":"基于粗糙聚类的局部离群点发现","authors":"Hongjuan Mi","doi":"10.1109/ISA.2011.5873272","DOIUrl":null,"url":null,"abstract":"The density at a data point is defined based on kernel function. And we introduce weight to refine rough k-means algorithm. Then we construct the formula for calculating local outlier score based on the clusters generated by the refined rough k-means algorithm. We use a synthetic data set and a real-world data set to verify that the new technique for local outliers detection is not only accurate but also efficient.","PeriodicalId":128163,"journal":{"name":"2011 3rd International Workshop on Intelligent Systems and Applications","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Discovering Local Outlier Based on Rough Clustering\",\"authors\":\"Hongjuan Mi\",\"doi\":\"10.1109/ISA.2011.5873272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The density at a data point is defined based on kernel function. And we introduce weight to refine rough k-means algorithm. Then we construct the formula for calculating local outlier score based on the clusters generated by the refined rough k-means algorithm. We use a synthetic data set and a real-world data set to verify that the new technique for local outliers detection is not only accurate but also efficient.\",\"PeriodicalId\":128163,\"journal\":{\"name\":\"2011 3rd International Workshop on Intelligent Systems and Applications\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 3rd International Workshop on Intelligent Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISA.2011.5873272\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 3rd International Workshop on Intelligent Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISA.2011.5873272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Discovering Local Outlier Based on Rough Clustering
The density at a data point is defined based on kernel function. And we introduce weight to refine rough k-means algorithm. Then we construct the formula for calculating local outlier score based on the clusters generated by the refined rough k-means algorithm. We use a synthetic data set and a real-world data set to verify that the new technique for local outliers detection is not only accurate but also efficient.