{"title":"具有表面粗糙度的体积积分方程的随机高阶基函数","authors":"T. Moselhy, L. Daniel","doi":"10.1109/EPEP.2007.4387127","DOIUrl":null,"url":null,"abstract":"In this paper we present stochastic high order basis functions suitable for the volumetric discretization of interconnect structures. The proposed basis functions are wideband, and can easily be integrated within a stochastic magneto-quasistatic (MQS) or a fullwave mixed potential integral equation (MPIE) solver, rendering the stochastic formulation computationally efficient. In addition, our high order basis functions facilitate the calculation of a correction term, improving the accuracy of the impedance ensemble average.","PeriodicalId":402571,"journal":{"name":"2007 IEEE Electrical Performance of Electronic Packaging","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Stochastic High Order Basis Functions for Volume Integral Equation with Surface Roughness\",\"authors\":\"T. Moselhy, L. Daniel\",\"doi\":\"10.1109/EPEP.2007.4387127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present stochastic high order basis functions suitable for the volumetric discretization of interconnect structures. The proposed basis functions are wideband, and can easily be integrated within a stochastic magneto-quasistatic (MQS) or a fullwave mixed potential integral equation (MPIE) solver, rendering the stochastic formulation computationally efficient. In addition, our high order basis functions facilitate the calculation of a correction term, improving the accuracy of the impedance ensemble average.\",\"PeriodicalId\":402571,\"journal\":{\"name\":\"2007 IEEE Electrical Performance of Electronic Packaging\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Electrical Performance of Electronic Packaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPEP.2007.4387127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Electrical Performance of Electronic Packaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEP.2007.4387127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stochastic High Order Basis Functions for Volume Integral Equation with Surface Roughness
In this paper we present stochastic high order basis functions suitable for the volumetric discretization of interconnect structures. The proposed basis functions are wideband, and can easily be integrated within a stochastic magneto-quasistatic (MQS) or a fullwave mixed potential integral equation (MPIE) solver, rendering the stochastic formulation computationally efficient. In addition, our high order basis functions facilitate the calculation of a correction term, improving the accuracy of the impedance ensemble average.