具有表面粗糙度的体积积分方程的随机高阶基函数

T. Moselhy, L. Daniel
{"title":"具有表面粗糙度的体积积分方程的随机高阶基函数","authors":"T. Moselhy, L. Daniel","doi":"10.1109/EPEP.2007.4387127","DOIUrl":null,"url":null,"abstract":"In this paper we present stochastic high order basis functions suitable for the volumetric discretization of interconnect structures. The proposed basis functions are wideband, and can easily be integrated within a stochastic magneto-quasistatic (MQS) or a fullwave mixed potential integral equation (MPIE) solver, rendering the stochastic formulation computationally efficient. In addition, our high order basis functions facilitate the calculation of a correction term, improving the accuracy of the impedance ensemble average.","PeriodicalId":402571,"journal":{"name":"2007 IEEE Electrical Performance of Electronic Packaging","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Stochastic High Order Basis Functions for Volume Integral Equation with Surface Roughness\",\"authors\":\"T. Moselhy, L. Daniel\",\"doi\":\"10.1109/EPEP.2007.4387127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present stochastic high order basis functions suitable for the volumetric discretization of interconnect structures. The proposed basis functions are wideband, and can easily be integrated within a stochastic magneto-quasistatic (MQS) or a fullwave mixed potential integral equation (MPIE) solver, rendering the stochastic formulation computationally efficient. In addition, our high order basis functions facilitate the calculation of a correction term, improving the accuracy of the impedance ensemble average.\",\"PeriodicalId\":402571,\"journal\":{\"name\":\"2007 IEEE Electrical Performance of Electronic Packaging\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Electrical Performance of Electronic Packaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPEP.2007.4387127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Electrical Performance of Electronic Packaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEP.2007.4387127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文提出了适合于互连结构体积离散化的随机高阶基函数。所提出的基函数是宽带的,可以很容易地集成在随机准静态(MQS)或全波混合势积分方程(MPIE)求解器中,使随机公式计算效率高。此外,我们的高阶基函数便于校正项的计算,提高了阻抗集合平均值的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic High Order Basis Functions for Volume Integral Equation with Surface Roughness
In this paper we present stochastic high order basis functions suitable for the volumetric discretization of interconnect structures. The proposed basis functions are wideband, and can easily be integrated within a stochastic magneto-quasistatic (MQS) or a fullwave mixed potential integral equation (MPIE) solver, rendering the stochastic formulation computationally efficient. In addition, our high order basis functions facilitate the calculation of a correction term, improving the accuracy of the impedance ensemble average.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信