{"title":"无人驾驶车辆的新型分散编队控制","authors":"Aolei Yang, W. Naeem, G. Irwin, Kang Li","doi":"10.1109/IVS.2012.6232122","DOIUrl":null,"url":null,"abstract":"This paper proposes a new methodology for solving the unmanned multi-vehicle formation control problem. It employs a unique “extension-decomposition-aggregation” scheme to transform the overall complex formation control problem to a group of sub-problems which work via boundary interactions. The H∞ robust control strategy is applied to design the decentralised formation controllers to reject the interactions and work jointly to maintain the stability of the overall formation. Simulation studies have been performed to verify its performance and effectiveness.","PeriodicalId":402389,"journal":{"name":"2012 IEEE Intelligent Vehicles Symposium","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Novel decentralised formation control for unmanned vehicles\",\"authors\":\"Aolei Yang, W. Naeem, G. Irwin, Kang Li\",\"doi\":\"10.1109/IVS.2012.6232122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new methodology for solving the unmanned multi-vehicle formation control problem. It employs a unique “extension-decomposition-aggregation” scheme to transform the overall complex formation control problem to a group of sub-problems which work via boundary interactions. The H∞ robust control strategy is applied to design the decentralised formation controllers to reject the interactions and work jointly to maintain the stability of the overall formation. Simulation studies have been performed to verify its performance and effectiveness.\",\"PeriodicalId\":402389,\"journal\":{\"name\":\"2012 IEEE Intelligent Vehicles Symposium\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Intelligent Vehicles Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2012.6232122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Intelligent Vehicles Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2012.6232122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Novel decentralised formation control for unmanned vehicles
This paper proposes a new methodology for solving the unmanned multi-vehicle formation control problem. It employs a unique “extension-decomposition-aggregation” scheme to transform the overall complex formation control problem to a group of sub-problems which work via boundary interactions. The H∞ robust control strategy is applied to design the decentralised formation controllers to reject the interactions and work jointly to maintain the stability of the overall formation. Simulation studies have been performed to verify its performance and effectiveness.