基于遗传算法的异步电动机模糊模型参考学习控制

A. El dessouky, M. Tarbouchi
{"title":"基于遗传算法的异步电动机模糊模型参考学习控制","authors":"A. El dessouky, M. Tarbouchi","doi":"10.1109/IECON.2001.975605","DOIUrl":null,"url":null,"abstract":"This paper presents an optimization technique for a model reference learning fuzzy controller using genetic algorithms. It consists of developing an algorithm that searches for the optimal parameters of an adaptive fuzzy indirect field oriented control of an induction motor. The optimized parameters are those that are not subjected to adaptation or learning processes during system operation. The proposed algorithm minimizes the effort and the time consumed during the design phase. It also guarantees a control design with the best performances that can be achieved under motor parameters variation/uncertainty and in a field weakening regime.","PeriodicalId":345608,"journal":{"name":"IECON'01. 27th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.37243)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Fuzzy model reference learning control of induction motor via genetic algorithms\",\"authors\":\"A. El dessouky, M. Tarbouchi\",\"doi\":\"10.1109/IECON.2001.975605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an optimization technique for a model reference learning fuzzy controller using genetic algorithms. It consists of developing an algorithm that searches for the optimal parameters of an adaptive fuzzy indirect field oriented control of an induction motor. The optimized parameters are those that are not subjected to adaptation or learning processes during system operation. The proposed algorithm minimizes the effort and the time consumed during the design phase. It also guarantees a control design with the best performances that can be achieved under motor parameters variation/uncertainty and in a field weakening regime.\",\"PeriodicalId\":345608,\"journal\":{\"name\":\"IECON'01. 27th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.37243)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IECON'01. 27th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.37243)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IECON.2001.975605\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON'01. 27th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.37243)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON.2001.975605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

提出了一种基于遗传算法的模型参考学习模糊控制器优化技术。研究了异步电动机自适应模糊间接定向磁场控制的最优参数搜索算法。优化后的参数是指在系统运行过程中不需要适应和学习的参数。该算法最大限度地减少了设计阶段的工作量和时间消耗。它还保证了在电机参数变化/不确定性和磁场减弱状态下具有最佳性能的控制设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fuzzy model reference learning control of induction motor via genetic algorithms
This paper presents an optimization technique for a model reference learning fuzzy controller using genetic algorithms. It consists of developing an algorithm that searches for the optimal parameters of an adaptive fuzzy indirect field oriented control of an induction motor. The optimized parameters are those that are not subjected to adaptation or learning processes during system operation. The proposed algorithm minimizes the effort and the time consumed during the design phase. It also guarantees a control design with the best performances that can be achieved under motor parameters variation/uncertainty and in a field weakening regime.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信