输电网扩容规划软件工具

A. Simo, C. Barbulescu, S. Kilyeni, A. Stoian
{"title":"输电网扩容规划软件工具","authors":"A. Simo, C. Barbulescu, S. Kilyeni, A. Stoian","doi":"10.1109/SACI.2015.7208195","DOIUrl":null,"url":null,"abstract":"The authors are proposing a software-tool for transmission network expansion planning (TNEP). The developed software-tool is able to be used in case of complex, large scale power systems. It uses a.c. complete power flow mathematical model. Power flow computing is performed using conventional methods. Optimal power flow and network expansion are performed using artificial intelligence methods. Within this field, two methods have been tackled: particle swarm optimization (PSO) and genetic algorithms (GA).","PeriodicalId":312683,"journal":{"name":"2015 IEEE 10th Jubilee International Symposium on Applied Computational Intelligence and Informatics","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Transmission network expansion planning software-tools\",\"authors\":\"A. Simo, C. Barbulescu, S. Kilyeni, A. Stoian\",\"doi\":\"10.1109/SACI.2015.7208195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors are proposing a software-tool for transmission network expansion planning (TNEP). The developed software-tool is able to be used in case of complex, large scale power systems. It uses a.c. complete power flow mathematical model. Power flow computing is performed using conventional methods. Optimal power flow and network expansion are performed using artificial intelligence methods. Within this field, two methods have been tackled: particle swarm optimization (PSO) and genetic algorithms (GA).\",\"PeriodicalId\":312683,\"journal\":{\"name\":\"2015 IEEE 10th Jubilee International Symposium on Applied Computational Intelligence and Informatics\",\"volume\":\"124 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 10th Jubilee International Symposium on Applied Computational Intelligence and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SACI.2015.7208195\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 10th Jubilee International Symposium on Applied Computational Intelligence and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SACI.2015.7208195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

作者提出了一个用于输电网扩展规划(TNEP)的软件工具。所开发的软件工具可用于复杂的大型电力系统。它采用交流完整的潮流数学模型。潮流计算采用传统方法进行。采用人工智能方法实现最优潮流和网络扩展。在这一领域中,有两种方法被研究:粒子群优化(PSO)和遗传算法(GA)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transmission network expansion planning software-tools
The authors are proposing a software-tool for transmission network expansion planning (TNEP). The developed software-tool is able to be used in case of complex, large scale power systems. It uses a.c. complete power flow mathematical model. Power flow computing is performed using conventional methods. Optimal power flow and network expansion are performed using artificial intelligence methods. Within this field, two methods have been tackled: particle swarm optimization (PSO) and genetic algorithms (GA).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信