一种新的基于实值负选择系统的异常检测算法

Zhengbing Hu, Zhou Ji, Ping Ma
{"title":"一种新的基于实值负选择系统的异常检测算法","authors":"Zhengbing Hu, Zhou Ji, Ping Ma","doi":"10.1109/WKDD.2008.110","DOIUrl":null,"url":null,"abstract":"In this paper, a new method of detector generation and matching mechanism for negative selection algorithm(NSA )is introduced with variable properties, which are called the Nsa-Vs-Detector. The detectors can be variable in different ways using this concept, the paper describes an algorithm when the variable parameter is the size of the detectors in real-valued space. The algorithm is tested with a synthetic datasets, the new method improves the NSA 's efficiency and reliability without significant increase in complexity.","PeriodicalId":101656,"journal":{"name":"First International Workshop on Knowledge Discovery and Data Mining (WKDD 2008)","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A Novel Anomaly Detection Algorithm Based on Real-Valued Negative Selection System\",\"authors\":\"Zhengbing Hu, Zhou Ji, Ping Ma\",\"doi\":\"10.1109/WKDD.2008.110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new method of detector generation and matching mechanism for negative selection algorithm(NSA )is introduced with variable properties, which are called the Nsa-Vs-Detector. The detectors can be variable in different ways using this concept, the paper describes an algorithm when the variable parameter is the size of the detectors in real-valued space. The algorithm is tested with a synthetic datasets, the new method improves the NSA 's efficiency and reliability without significant increase in complexity.\",\"PeriodicalId\":101656,\"journal\":{\"name\":\"First International Workshop on Knowledge Discovery and Data Mining (WKDD 2008)\",\"volume\":\"100 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"First International Workshop on Knowledge Discovery and Data Mining (WKDD 2008)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WKDD.2008.110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"First International Workshop on Knowledge Discovery and Data Mining (WKDD 2008)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WKDD.2008.110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文介绍了一种具有可变性质的负选择算法(NSA)的检测器生成和匹配机制,称为NSA - vs -检测器。利用这一概念,本文描述了一种以实值空间中检测器的大小为变量参数时的算法。在一个合成数据集上对该算法进行了测试,结果表明该算法在不显著增加算法复杂度的前提下提高了算法的效率和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Anomaly Detection Algorithm Based on Real-Valued Negative Selection System
In this paper, a new method of detector generation and matching mechanism for negative selection algorithm(NSA )is introduced with variable properties, which are called the Nsa-Vs-Detector. The detectors can be variable in different ways using this concept, the paper describes an algorithm when the variable parameter is the size of the detectors in real-valued space. The algorithm is tested with a synthetic datasets, the new method improves the NSA 's efficiency and reliability without significant increase in complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信